Unit hydrograph approximations assuming linear flow through topologically random channel networks

Unit hydrograph approximations assuming linear flow through topologically random channel networks The instantaneous unit Hydrograph (IUH) of a drainage basin is derived in terms of fundamental basin characteristics (Z, α, β), where α parameterizes the link (channel segment) length distribution, and β is a vector of hydraulic parameters, Z is one of three basin topological properties, N, (N, D), or (N, M), where N is magnitude (number of first‐order streams), D is diameter (mainstream length), and M is order. The IUH is derived based on assumptions that the links are independent and identically distributed random variables and that the network is a member of a topologically random population. Linear routing schemes, including translation, diffusion, and general linear routing are used, and constant drainage density is assumed. By using (N, α, β) as the fundamental basin characteristics, asymptotic (for large N) considerations lead to a Weibull probability density function for the IUH, with time to peak given by tp = (2N)½ α*/β* where α* is mean link length, and β* is a scalar hydraulic parameter (usually average celerity). This asymptotic IUH is identical for all linear routing schemes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Water Resources Research Wiley

Unit hydrograph approximations assuming linear flow through topologically random channel networks

Loading next page...
 
/lp/wiley/unit-hydrograph-approximations-assuming-linear-flow-through-YD5a516bRL
Publisher
Wiley
Copyright
This paper is not subject to U.S.Copyright © 1985 by the American Geophysical Union.
ISSN
0043-1397
eISSN
1944-7973
DOI
10.1029/WR021i005p00743
Publisher site
See Article on Publisher Site

Abstract

The instantaneous unit Hydrograph (IUH) of a drainage basin is derived in terms of fundamental basin characteristics (Z, α, β), where α parameterizes the link (channel segment) length distribution, and β is a vector of hydraulic parameters, Z is one of three basin topological properties, N, (N, D), or (N, M), where N is magnitude (number of first‐order streams), D is diameter (mainstream length), and M is order. The IUH is derived based on assumptions that the links are independent and identically distributed random variables and that the network is a member of a topologically random population. Linear routing schemes, including translation, diffusion, and general linear routing are used, and constant drainage density is assumed. By using (N, α, β) as the fundamental basin characteristics, asymptotic (for large N) considerations lead to a Weibull probability density function for the IUH, with time to peak given by tp = (2N)½ α*/β* where α* is mean link length, and β* is a scalar hydraulic parameter (usually average celerity). This asymptotic IUH is identical for all linear routing schemes.

Journal

Water Resources ResearchWiley

Published: May 1, 1985

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off