Access the full text.
Sign up today, get DeepDyve free for 14 days.


P. Domizio, Y. Liu, L. Bisson, D. Barile (2017)
Cell wall polysaccharides released during the alcoholic fermentation by Schizosaccharomyces pombe and S. japonicus: quantification and characterization.Food microbiology, 61
O. Gharib (2014)
Effect of kombucha on some trace element levels in different organs of electromagnetic field exposed ratsJournal of Radiation Research and Applied Sciences, 7
B. Junker (2004)
Scale-up methodologies for Escherichia coli and yeast fermentation processes.Journal of bioscience and bioengineering, 97 6
B. Wolfe, R. Dutton (2015)
Fermented Foods as Experimentally Tractable Microbial EcosystemsCell, 161
Guttapadu Sreeramulu, Yang Zhu, W. Knol (2000)
Kombucha fermentation and its antimicrobial activity.Journal of agricultural and food chemistry, 48 6
Mindani Watawana, Nilakshi Jayawardena, Chaminie Gunawardhana, V. Waisundara (2016)
Enhancement of the antioxidant and starch hydrolase inhibitory activities of king coconut water (Cocos nucifera var. aurantiaca) by fermentation with kombucha 'tea fungus'.International Journal of Food Science and Technology, 51
Mindani Watawana, Nilakshi Jayawardena, Shakkya Ranasinghe, V. Waisundara (2015)
Evaluation of the Stability of the Total Antioxidant Capacity, Polyphenol Contents, and Starch Hydrolase Inhibitory Activities of Kombucha Teas Using an In Vitro Model of DigestionJournal of Chemistry, 2015
Caili Fu, Fen Yan, Zeli Cao, Fan Xie, Juan Lin (2014)
Antioxidant activities of kombucha prepared from three different substrates and changes in content of probiotics during storageFood Science and Technology International, 34
Jan Steensels, L. Daenen, P. Malcorps, G. Derdelinckx, H. Verachtert, K. Verstrepen (2015)
Brettanomyces yeasts--From spoilage organisms to valuable contributors to industrial fermentations.International journal of food microbiology, 206
S. Bhattacharya, R. Gachhui, P. Sil (2013)
Effect of Kombucha, a fermented black tea in attenuating oxidative stress mediated tissue damage in alloxan induced diabetic rats.Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 60
O. Podolich, I. Zaets, O. Kukharenko, I. Orlovska, O. Reva, L. Khirunenko, M. Sosnin, A. Haidak, S. Shpylova, I. Rohutskyy, A. Kharina, М. Skoryk, M. Kremenskoy, D. Klymchuk, R. Demets, J. Vera, N. Kozyrovska (2017)
The First Space-Related Study of a Kombucha Multimicrobial Cellulose-Forming Community: Preparatory Laboratory ExperimentsOrigins of Life and Evolution of Biospheres, 47
C. Kurtzman, C. Robnett, E. Basehoar-Powers (2001)
Zygosaccharomyces kombuchaensis, a new ascosporogenous yeast from 'Kombucha tea'.FEMS yeast research, 1 2
P. Mayser, Stephanie Fromme, G. Leitzmann, K. Gründer (1995)
The yeast spectrum of the ‘tea fungus Kombucha’Mycoses, 38
D. Cvetković, S. Markov, M. Djurić, D. Savić, A. Velićanski (2008)
Specific interfacial area as a key variable in scaling-up Kombucha fermentationJournal of Food Engineering, 85
Mindani Watawana, Nilakshi Jayawardena, Shakkya Ranasinghe, V. Waisundara (2017)
Evaluation of the Effect of Different Sweetening Agents on the Polyphenol Contents and Antioxidant and Starch Hydrolase Inhibitory Properties of KombuchaJournal of Food Processing and Preservation, 41
P. Stanbury, A. Whitaker, S. Hall (1984)
Principles of Fermentation Technology
R. Malbaša, E. Lončar, J. Vitas, J. Canadanovic-Brunet (2011)
Influence of starter cultures on the antioxidant activity of kombucha beverageFood Chemistry, 127
J. Vitas, R. Malbaša, J. Grahovac, E. Lončar (2013)
The antioxidant activity of kombucha fermented milk products with stinging nettle and winter savoryChemical Industry & Chemical Engineering Quarterly, 19
J. Roos, L. Vuyst (2018)
Acetic acid bacteria in fermented foods and beverages.Current opinion in biotechnology, 49
Vikas Kumar, V. Joshi (2016)
Kombucha: Technology, Microbiology, Production, Composition and Therapeutic ValueInternational Journal of Food and Fermentation Technology, 6
R. Srinivasan, S. Smolinske, D. Greenbaum (1997)
Probable gastrointestinal toxicity of Kombucha tea: is this beverage healthy or harmful?Journal of general internal medicine, 12 10
(2013)
Characteristics of Kombucha fermentation
R. Jayabalan, R. Malbaša, E. Lončar, J. Vitas, M. Sathishkumar (2014)
A Review on Kombucha Tea-Microbiology, Composition, Fermentation, Beneficial Effects, Toxicity, and Tea Fungus.Comprehensive reviews in food science and food safety, 13 4
B. Mohite, S. Patil (2014)
A novel biomaterial: bacterial cellulose and its new era applicationsBiotechnology and Applied Biochemistry, 61
L. Ayed, Salwa Abid, M. Hamdi (2016)
Development of a beverage from red grape juice fermented with the Kombucha consortiumAnnals of Microbiology, 67
S. Shehata, A. Lila (2005)
Antimicrobial activity of the fermented tea kombucha.
O. Reva, I. Zaets, L. Ovcharenko, O. Kukharenko, S. Shpylova, O. Podolich, J. Vera, N. Kozyrovska (2015)
Metabarcoding of the kombucha microbial community grown in different microenvironmentsAMB Express, 5
E. Lončar, M. Djurić, R. Malbaša, L. Kolarov, M. Klašnja (2006)
Influence of Working Conditions Upon Kombucha Conducted Fermentation of Black TeaFood and Bioproducts Processing, 84
S. Chakravorty, S. Bhattacharya, A. Chatzinotas, Writachit Chakraborty, D. Bhattacharya, R. Gachhui (2016)
Kombucha tea fermentation: Microbial and biochemical dynamics.International journal of food microbiology, 220
A. Marsh, A. Marsh, Ó. O’Sullivan, C. Hill, R. Ross, R. Ross, P. Cotter, P. Cotter (2014)
Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples.Food microbiology, 38
W. Goh, A. Rosma, Bhupinder Kaur, A. Fazilah, A. Karim, R. Bhat (2012)
Fermentation of black tea broth (Kombucha): I. Effects of sucrose concentration and fermentation time on the yield of microbial celluloseinternational food research journal, 19
Cristina Campano, A. Balea, Á. Blanco, C. Negro (2016)
Enhancement of the fermentation process and properties of bacterial cellulose: a reviewCellulose, 23
P. Chawla, I. Bajaj, S. Survase, R. Singhal (2009)
Microbial Cellulose: Fermentative Production and ApplicationsFood Technology and Biotechnology, 47
Chia-Hung Kuo, Jing-Hua Chen, B. Liou, Cheng-Kang Lee (2016)
Utilization of acetate buffer to improve bacterial cellulose production by Gluconacetobacter xylinusFood Hydrocolloids, 53
Mindani Watawana, Nilakshi Jayawardena, Chaminie Gunawardhana, V. Waisundara (2015)
Health, Wellness, and Safety Aspects of the Consumption of KombuchaJournal of Chemistry, 2015
Nguyen Nguyen, Phuong Nguyen, H. Nguyen, P. Le (2015)
Screening the optimal ratio of symbiosis between isolated yeast and acetic acid bacteria strain from traditional kombucha for high-level production of glucuronic acidLwt - Food Science and Technology, 64
C. Hidalgo, E. Mateo, A. Mas, M. Torija (2012)
Identification of yeast and acetic acid bacteria isolated from the fermentation and acetification of persimmon (Diospyros kaki).Food microbiology, 30 1
K. Bellassoued, F. Ghrab, F. Makni‐Ayadi, J. Pelt, A. Elfeki, E. Ammar (2015)
Protective effect of kombucha on rats fed a hypercholesterolemic diet is mediated by its antioxidant activityPharmaceutical Biology, 53
M. Torino, Rocío Limón, C. Martínez-Villaluenga, S. Mäkinen, A. Pihlanto, C. Vidal-valverde, J. Frías (2013)
Antioxidant and antihypertensive properties of liquid and solid state fermented lentils.Food chemistry, 136 2
R. Jayabalan, Pei-Ni Chen, Y. Hsieh, K. Prabhakaran, P. Pitchai, S. Marimuthu, P. Thangaraj, Swaminathan, S. Yun (2011)
Effect of solvent fractions of kombucha tea on viability and invasiveness of cancer cells—Characterization of dimethyl 2-(2-hydroxy-2-methoxypropylidine) malonate and vitexin
N. Nehme, F. Mathieu, P. Taillandier (2008)
Quantitative study of interactions between Saccharomyces cerevisiae and Oenococcus oeni strainsJournal of Industrial Microbiology & Biotechnology, 35
E. Meersman, Jan Steensels, M. Mathawan, Pieter-Jan Wittocx, Veerle Saels, Nore Struyf, H. Bernaert, G. Vrancken, K. Verstrepen (2013)
Detailed Analysis of the Microbial Population in Malaysian Spontaneous Cocoa Pulp Fermentations Reveals a Core and Variable MicrobiotaPLoS ONE, 8
M. Coton, Audrey Pawtowski, B. Taminiau, G. Burgaud, F. Déniel, Laurent Coulloumme-Labarthe, A. Fall, G. Daube, E. Coton (2017)
Unraveling microbial ecology of industrial-scale Kombucha fermentations by metabarcoding and culture-based methods.FEMS microbiology ecology, 93 5
H. Battikh, A. Bakhrouf, E. Ammar (2012)
Antimicrobial effect of Kombucha analoguesLwt - Food Science and Technology, 47
Gaillard Bd (1956)
Cell-wall polysaccharides.Acta physiologica et pharmacologica Neerlandica, 5 2
B. Vázquez-Cabral, M. Larrosa-Pérez, J. Gallegos‐Infante, M. Moreno‐Jiménez, R. González-Laredo, J. Rutiaga-Quiñones, C. Gamboa-Gómez, N. Rocha‐Guzmán (2017)
Oak kombucha protects against oxidative stress and inflammatory processes.Chemico-biological interactions, 272
Aophat Choonut, Makorn Saejong, Kanokphorn Sangkharak (2014)
The Production of Ethanol and Hydrogen from Pineapple Peel by Saccharomyces Cerevisiae and Enterobacter AerogenesEnergy Procedia, 52
M. Cacicedo, M. Castro, Ioannis Servetas, L. Bosnea, K. Boura, P. Tsafrakidou, Agapi Dima, A. Terpou, A. Koutinas, G. Castro (2016)
Progress in bacterial cellulose matrices for biotechnological applications.Bioresource technology, 213
J. Pitt, A. Hocking (1987)
Fungi and Food SpoilageFungi and Food Spoilage
Wojciech Czaja, A. Krystynowicz, S. Bielecki, R. Brown (2006)
Microbial cellulose--the natural power to heal wounds.Biomaterials, 27 2
Lee Hoon, C. Choo, Mindani Watawana, Nilakshi Jayawardena, V. Waisundara (2014)
WITHDRAWN: Kombucha ‘tea fungus’ enhances the tea polyphenol contents, antioxidant activity and alpha-amylase inhibitory activity of five commonly consumed teasJournal of Functional Foods
Yang Wei-we (2008)
A Review on
T. Dakal, L. Solieri, P. Giudici (2014)
Adaptive response and tolerance to sugar and salt stress in the food yeast Zygosaccharomyces rouxii.International journal of food microbiology, 185
B. Nummer (2013)
Kombucha brewing under the Food and Drug Administration model Food Code: risk analysis and processing guidance.Journal of environmental health, 76 4
Christopher Lee, J. Gu, K. Kafle, J. Catchmark, Seong Kim (2015)
Cellulose produced by Gluconacetobacter xylinus strains ATCC 53524 and ATCC 23768: Pellicle formation, post-synthesis aggregation and fiber density.Carbohydrate polymers, 133
Yuzo Yamada, P. Yukphan, Huong Vu, Y. Muramatsu, Duangjai Ochaikul, S. Tanasupawat, Y. Nakagawa (2012)
Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae).The Journal of general and applied microbiology, 58 5
R. Jayabalan, S. Marimuthu, P. Thangaraj, M. Sathishkumar, A. Binupriya, K. Swaminathan, S. Yun (2008)
Preservation of kombucha tea-effect of temperature on tea components and free radical scavenging properties.Journal of agricultural and food chemistry, 56 19
B. Bauer-Petrovska, L. Petrushevska-Tozi (2000)
Mineral and water soluble vitamin content in the Kombucha drinkInternational Journal of Food Science and Technology, 35
Sheng-Che Chu, C. Chen (2006)
Effects of origins and fermentation time on the antioxidant activities of kombuchaFood Chemistry, 98
V. Nguyen, B. Flanagan, M. Gidley, G. Dykes (2008)
Characterization of Cellulose Production by a Gluconacetobacter xylinus Strain from KombuchaCurrent Microbiology, 57
A. Marsh, C. Hill, R. Ross, P. Cotter (2014)
Fermented beverages with health-promoting potential: Past and future perspectivesTrends in Food Science and Technology, 38
C. Lopez, S. Beaufort, C. Brandam, P. Taillandier (2014)
Interactions between Kluyveromyces marxianus and Saccharomyces cerevisiae in tequila must type medium fermentationWorld Journal of Microbiology and Biotechnology, 30
Mindani Watawana, Nilakshi Jayawardena, V. Waisundara (2015)
Enhancement of the Functional Properties of Coffee Through Fermentation by “Tea Fungus” (Kombucha)Journal of Food Processing and Preservation, 39
T. Srihari, K. Karthikesan, N. Ashokkumar, U. Satyanarayana (2013)
Antihyperglycaemic efficacy of kombucha in streptozotocin-induced ratsJournal of Functional Foods, 5
J. Reiss (1994)
Influence of different sugars on the metabolism of the tea fungusZeitschrift für Lebensmittel-Untersuchung und -Forschung, 198
F. Esa, S. Tasirin, N. Rahman (2014)
Overview of Bacterial Cellulose Production and ApplicationAgriculture and Agricultural Science Procedia, 2
L. Caicedo, F. Franca, L. López (2001)
Factores para el escalado del proceso de producción de celulosa por fermentación estáticaRevista Colombiana de Química, 30
S. Pfeiffer, Birgit Mitter, A. Oswald, B. Schloter-Hai, M. Schloter, S. Declerck, A. Sessitsch (2017)
Rhizosphere microbiomes of potato cultivated in the High Andes show stable and dynamic core microbiomes with different responses to plant developmentFEMS Microbiology Ecology, 93
W. Goh, A. Rosma, Bhupinder Kaur, A. Fazilah, A. Karim, R. Bhat (2012)
Microstructure and physical properties of microbial cellulose produced during fermentation of black tea broth (Kombucha). II.international food research journal, 19
Dianne Ruka, G. Simon, K. Dean (2012)
Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose.Carbohydrate polymers, 89 2
Sangita Kumar, G. Narayan, Shyam Hassarajani (2008)
Determination of anionic minerals in black and kombucha tea using ion chromatographyFood Chemistry, 111
S. Markov, V. Jerinić, D. Cvetković, E. Lončar, R. Malbaša (2003)
Kombucha: Functional beverage: Composition, characteristics and process of biotransformationHemijska Industrija, 57
R. Malbaša, E. Lončar, M. Djurić, M. Klašnja, L. Kolarov, S. Markov (2006)
Scale-Up of Black Tea Batch Fermentation by KombuchaFood and Bioproducts Processing, 84
S. Sun, Hansheng Gong, X. Jiang, Y. Zhao (2014)
Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae on alcoholic fermentation behaviour and wine aroma of cherry wines.Food microbiology, 44
S. Hur, Seung Lee, Young‐Chan Kim, I. Choi, Geun-Bae Kim (2014)
Effect of fermentation on the antioxidant activity in plant-based foods.Food chemistry, 160
P. Blanc (1996)
Characterization of the tea fungus metabolitesBiotechnology Letters, 18
Rajagopalan Vijayaraghavan, Maninder Singh, P. Rao, R. Bhattacharya, Pravin Kumar, K. Sugendran, Om Kumar, S. Pant, Ram Singh (2000)
Subacute (90 days) oral toxicity studies of Kombucha tea.Biomedical and environmental sciences : BES, 13 4
C. Greenwalt, R.A Ledford, KH Steinkraus (1998)
Determination and Characterization of the Antimicrobial Activity of the Fermented TeaKombuchaLwt - Food Science and Technology, 31
Irina Sulaeva, U. Henniges, T. Rosenau, A. Potthast (2015)
Bacterial cellulose as a material for wound treatment: Properties and modifications. A review.Biotechnology advances, 33 8
Greg Richards, Marques Lénia, K. Mein, L. Marques (1963)
Summary for policymakers
C. Chen, B. Liu (2000)
Changes in major components of tea fungus metabolites during prolonged fermentationJournal of Applied Microbiology, 89
R. Jayabalan, S. Marimuthu, K. Swaminathan (2007)
Changes in content of organic acids and tea polyphenols during kombucha tea fermentationFood Chemistry, 102
A. Velićanski, D. Cvetković, S. Markov, V. Šaponjac, Jelena Vulić (2014)
Antioxidant and Antibacterial Activity of the Beverage Obtained by Fermentation of Sweetened Lemon Balm (Melissa officinalis L.) Tea with Symbiotic Consortium of Bacteria and Yeasts.Food technology and biotechnology, 52 4
IntroductionFermentation is one of the most antique methods of food preservation. It is also a low‐cost energy conservation system, which is essential to ensure the life and safety of food. Many biochemical changes occur during fermentation and may affect the nutrient compounds and consequently the properties of the final product, like the bioactivity and digestibility. Recently, this bioprocess has been applied for the production and extraction of bioactive compounds from plants in food and beverage industries (Hur, Lee, Kim, Choi, & Kim, ).Kombucha tea is obtained from a symbiotic culture of acetic acid bacteria (AAB; Komagataeibacter, Gluconobacter, and Acetobacter species) (Roos & Vuyst, ), lactic acid bacteria (LAB; Lactobacillus, Lactococcus) (Marsh, Hill, Ross, & Cotter, ), and yeasts (Schizosaccharomyces pombe, Saccharomycodes ludwigii, Kloeckera apiculata, Saccharomyces cerevisiae, Zygosaccharomyces bailii, Torulaspora delbrueckii, Brettanomyces bruxellensis) (Coton et al., ) in a sweet medium, generally black tea. Its fermentation process also leads to the formation of a floating biofilm on the surface of the growth medium due to the activity of certain strains of AAB (Watawana, Jayawardena, Gunawardhana, & Waisundara, ). The main acids present are acetic, gluconic, tartaric, malic, and in less proportion citric acid. All these acids are responsible for its characteristic
Journal of Food Science – Wiley
Published: Jan 1, 2018
Keywords: ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.