Access the full text.
Sign up today, get DeepDyve free for 14 days.
E 2008, by the American Society of Limnology and Oceanography, Inc. Carbon and nitrogen loss rates during aging of lake sediment: Changes over 27 years studied in varved lake sediment
A. Ek, I. Renberg (2001)
Heavy metal pollution and lake acidity changes caused by one thousand years of copper mining at Falun, central SwedenJournal of Paleolimnology, 26
P. Mulholland, J. Elwood (1982)
The role of lake and reservoir sediments as sinks in the perturbed global carbon cycleTellus A, 34
G. Eriksson (1960)
Advance and Retreat of Charcoal Iron Industry and Rural Settlement in BergslagenGeografiska Annaler, 42
G. Eriksson (1957)
The Decline of the Small Blast-Furnaces and Forges in Bergslagen after 1850: With Special Reference to Enterprises in the Valley of Kolbäck RiverGeografiska Annaler, 39
Joanna Clark, P. Chapman, and Heathwaite, J. Adamson (2006)
Suppression of dissolved organic carbon by sulfate induced acidification during simulated droughts.Environmental science & technology, 40 6
A. Aufdenkampe, E. Mayorga, P. Raymond, J. Melack, S. Doney, S. Alin, R. Aalto, K. Yoo (2011)
Riverine coupling of biogeochemical cycles between land, oceans, and atmosphereFrontiers in Ecology and the Environment, 9
T. Dittmar, R. Lara (2001)
Molecular evidence for lignin degradation in sulfate-reducing mangrove sediments (Amazônia, Brazil)Geochimica et Cosmochimica Acta, 65
Hedges Hedges, Keil Keil, Benner Benner (1997)
What happens to terrestrial organic matter in the ocean?Org. Geochem., 27
(2011)
sugars and lignin-derived phenols, Geochim
N. Anderson, William D'Andrea, S. Fritz (2009)
Holocene carbon burial by lakes in SW GreenlandGlobal Change Biology, 15
M. Maerki, B. Müller, B. Wehrli (2006)
Microscale mineralization pathways in surface sediments: A chemical sensor study in Lake BaikalLimnology and Oceanography, 51
R. Teisserenc, M. Lucotte, S. Houel, J. Carreau (2010)
Integrated transfers of terrigenous organic matter to lakes at their watershed level: A combined biomarker and GIS analysisGeochimica et Cosmochimica Acta, 74
J. Cole, Y. Prairie, N. Caraco, W. McDowell, L. Tranvik, R. Striegl, C. Duarte, P. Kortelainen, J. Downing, J. Middelburg, J. Melack (2007)
Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon BudgetEcosystems, 10
A. Ouellet, K. Lalonde, J. Plouhinec, Nicolas Soumis, M. Lucotte, Y. Gélinas (2012)
Assessing carbon dynamics in natural and perturbed boreal aquatic systemsJournal of Geophysical Research, 117
J. Middelburg, Tom Vlug, F. Jaco, W. Nat (1993)
Organic matter mineralization in marine systems, 8
P. Raymond, J. Hartmann, R. Lauerwald, S. Sobek, C. McDonald, M. Hoover, D. Butman, R. Striegl, E. Mayorga, C. Humborg, P. Kortelainen, H. Dürr, M. Meybeck, P. Ciais, P. Guth (2013)
Global carbon dioxide emissions from inland watersNature, 503
J. Ertel, J. Hedges (1984)
The lignin component of humic substances: Distribution among soil and sedimentary humic, fulvic, and base-insoluble fractionsGeochimica et Cosmochimica Acta, 48
P. Kortelainen, M. Rantakari, H. Pajunen, J. Huttunen, T. Mattsson, S. Juutinen, T. Larmola, J. Alm, J. Silvola, P. Martikainen (2013)
Carbon evasion/accumulation ratio in boreal lakes is linked to nitrogenGlobal Biogeochemical Cycles, 27
S. Tareq, N. Tanaka, K. Ohta (2004)
Biomarker signature in tropical wetland: lignin phenol vegetation index (LPVI) and its implications for reconstructing the paleoenvironment.The Science of the total environment, 324 1-3
F. Hu, J. Hedges, Elizabeth Gordon, L. Brubaker (1999)
Lignin biomarkers and pollen in postglacial sediments of an Alaskan lakeGeochimica et Cosmochimica Acta, 63
(1997)
Calibration and application of marine sedimentary physical properties using a multisensor core logger
(2005)
Low-frequency and high-frequency changes in temperature and effective humidity
P. Bragée, F. Mazier, A. Nielsen, P. Rosén, D. Fredh, A. Broström, W. Granéli, D. Hammarlund (2015)
Historical TOC concentration minima during peak sulfur deposition in two Swedish lakesBiogeosciences, 12
(1955)
Some pollen profiles from arctic
Eriksson Eriksson (1957)
The decline of the small blast‐furnaces and forges in Bergslagen after 1850Geogr. Ann., 39
(2009)
INTCAL 09 and MARINE09 radiocarbon age calibration curves
I. Campbell, C. Campbell, D. Vitt, D. Kelker, L. Laird, D. Trew, B. Kotak, D. Leclair, S. Bayley (2000)
A first estimate of organic carbon storage in Holocene lake sediments in Alberta, CanadaJournal of Paleolimnology, 24
C. Teodoru, J. Bastien, M. Bonneville, P. Giorgio, M. Demarty, M. Garneau, J. Hélie, L. Pelletier, Y. Prairie, N. Roulet, I. Strachan, A. Tremblay (2012)
The net carbon footprint of a newly created boreal hydroelectric reservoirGlobal Biogeochemical Cycles, 26
(2001)
Heavy metal pollution and lake acidity changes caused by one thousand years of copper mining at Falun
(2008)
Carbon and nitrogen loss rates during aging of lake sediment : Changes over 27 years studies in varved lake sediment , Limnol
M. Ferland, P. Giorgio, C. Teodoru, Y. Prairie (2012)
Long‐term C accumulation and total C stocks in boreal lakes in northern QuébecGlobal Biogeochemical Cycles, 26
(2007)
acidification during simulated droughts
S. Kulkarni, Trevor Clifton, D. Backer, R. Foster, A. Fruchter, Joseph Taylor (1988)
A fast pulsar in radio nebula CTB80Nature, 331
J. Hedges, R. Blanchette, K. Weliky, A. Devol (1988)
Effects of fungal degradation on the CuO oxidation products of lignin: A controlled laboratory studyGeochimica et Cosmochimica Acta, 52
(1955)
Some pollen pro fi les from arctic Alaska
M. Kastowski, M. Hinderer, A. Vecsei (2011)
Long‐term carbon burial in European lakes: Analysis and estimateGlobal Biogeochemical Cycles, 25
G. Einsele, Jianping Yan, M. Hinderer (2001)
Atmospheric carbon burial in modern lake basins and its significance for the global carbon budgetGlobal and Planetary Change, 30
L. Tranvik, J. Downing, J. Cotner, S. Loiselle, R. Striegl, T. Ballatore, P. Dillon, K. Finlay, K. Fortino, Lesley Knoll, P. Kortelainen, T. Kutser, S. Larsen, I. Laurion, D. Leech, S. McCallister, D. McKnight, J. Melack, E. Overholt, J. Porter, Y. Prairie, W. Renwick, F. Roland, B. Sherman, D. Schindler, S. Sobek, A. Tremblay, M. Vanni, A. Verschoor, Eddie Wachenfeldt, G. Weyhenmeyer (2009)
Lakes and reservoirs as regulators of carbon cycling and climateLimnology and Oceanography, 54
P. Reimer, E. Bard, A. Bayliss, J. Beck, P. Blackwell, C. Ramsey, C. Buck, Hai Cheng, R. Edwards, M. Friedrich, P. Grootes, T. Guilderson, H. Haflidason, I. Hajdas, C. Hatté, T. Heaton, D. Hoffmann, A. Hogg, K. Hughen, K. Kaiser, B. Kromer, S. Manning, M. Niu, R. Reimer, D. Richards, E. Scott, J. Southon, R. Staff, C. Turney, J. Plicht (2013)
IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BPRadiocarbon, 55
R. Benner (2004)
What happens to terrestrial organic matter in the oceanMarine Chemistry, 92
D. Livingstone (1955)
Some Pollen Profiles from Arctic AlaskaEcology, 36
P. Reimer, M. Baillie, E. Bard, A. Bayliss, J. Beck, P. Blackwell, C. Ramsey, C. Buck, G. Burr, R. Edwards, M. Friedrich, P. Grootes, T. Guilderson, I. Hajdas, T. Heaton, A. Hogg, K. Hughen, K. Kaiser, B. Kromer, F. McCormac, S. Manning, R. Reimer, D. Richards, J. Southon, S. Talamo, C. Turney, J. Plicht, C. Weyhenmeyer (2009)
IntCal09 and Marine09 Radiocarbon Age Calibration Curves, 0–50,000 Years cal BPRadiocarbon, 51
J. Lundqvist (1986)
Late Weichselian glaciation and deglaciation in ScandinaviaQuaternary Science Reviews, 5
H. Seppä, D. Hammarlund, K. Antonsson (2005)
Low-frequency and high-frequency changes in temperature and effective humidity during the Holocene in south-central Sweden: implications for atmospheric and oceanic forcings of climateClimate Dynamics, 25
S. Opsahl, R. Benner (1995)
Early diagenesis of vascular plant tissues: Lignin and cutin decomposition and biogeochemical implicationsGeochimica et Cosmochimica Acta, 59
S. Sobek, Grete Algesten, A. Bergström, M. Jansson, L. Tranvik (2003)
The catchment and climate regulation of pCO2 in boreal lakesGlobal Change Biology, 9
(1002)
2015JG002987 CHMIEL ET AL. ORGANIC MATTER BURIAL AND QUALITY
P. Appleby, F. Oldfield (1978)
The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sedimentCatena, 5
N. Anderson, R. Dietz, D. Engstrom (2013)
Land-use change, not climate, controls organic carbon burial in lakesProceedings of the Royal Society B: Biological Sciences, 280
G. Possnert (1990)
Radiocarbon dating by the accelerator techniqueNorwegian Archaeological Review, 23
(2011)
Chemical Biomarkers in Aquatic Ecosystems, 396 pp
D. Bastviken, L. Tranvik, J. Downing, P. Crill, A. Enrich-Prast (2011)
Freshwater Methane Emissions Offset the Continental Carbon SinkScience, 331
(1999)
High - performance liquid chromatography of ligninderived phenols in environmental samples with diode array detection
P. Kortelainen, H. Pajunen, M. Rantakari, M. Saarnisto (2004)
A large carbon pool and small sink in boreal Holocene lake sedimentsGlobal Change Biology, 10
M. Weber, F. Niessen, G. Kuhn, M. Wiedicke (1997)
Calibration and application of marine sedimentary physical properties using a multi-sensor core loggerMarine Geology, 136
L. Lankton (2000)
Iron-Making Societies: Early Industrial Development in Sweden and Russia, 1600-1900 (review)Technology and Culture, 41
R. Benner, K. Weliky, J. Hedges (1990)
Early diagenesis of mangrove leaves in a tropical estuary: Molecular-level analyses of neutral sugars and lignin-derived phenolsGeochimica et Cosmochimica Acta, 54
M. Ferland, Y. Prairie, C. Teodoru, P. Giorgio (2014)
Linking organic carbon sedimentation, burial efficiency, and long‐term accumulation in boreal lakesJournal of Geophysical Research: Biogeosciences, 119
J. Hedges, J. Ertel (1982)
Characterization of lignin by gas capillary chromatography of cupric oxide oxidation productsAnalytical Chemistry, 54
J. Vogel, J. Southon, D. Nelson, T. Brown (1984)
Performance of catalytically condensed carbon for use in accelerator mass spectrometryNuclear Instruments & Methods in Physics Research Section B-beam Interactions With Materials and Atoms, 5
(1993)
Organic matter mineralization inmarine systems , Global Planet
M. Ågren (1998)
Iron-making societies : early industrial development in Sweden and Russia, 1600-1900
J. Lobbes, H. Fitznar, G. Kattner (1999)
High-performance liquid chromatography of lignin-derived phenols in environmental samples with diode array detection.Analytical chemistry, 71 15
D. Hammarlund, A. Mackay, D. Fallon, Gemma Pateman, Luisa Tavio, M. Leng, N. Rose (2008)
A sedimentary record of the rise and fall of the metal industry in Bergslagen, south central SwedenJournal of Paleolimnology, 39
(1995)
Mining, in Manufacturing and Services. National Atlas of Sweden
Margaret Squires, D. Mazzucchi, K. Devito (2006)
Carbon burial and infill rates in small Western Boreal lakes: physical factors affecting carbon storageCanadian Journal of Fisheries and Aquatic Sciences, 63
S. Sobek, E. Durisch-Kaiser, R. Zurbrügg, Nuttakan Wongfun, M. Wessels, Natacha Pasche, B. Wehrli (2009)
Organic carbon burial efficiency in lake sediments controlled by oxygen exposure time and sediment sourceLimnology and Oceanography, 54
K. Brown, H. Seppä, G. Schoups, R. Fausto, P. Rasmussen, H. Birks (2012)
A spatio-temporal reconstruction of Holocene temperature change in southern ScandinaviaThe Holocene, 22
(2011)
Riverine coupling
Boreal lake sediments are important sites of organic carbon (OC) storage, which have accumulated substantial amounts of OC over the Holocene epoch; the temporal evolution and the strength of this Holocene carbon (C) sink is, however, not well constrained. In this study we investigated the temporal record of carbon mass accumulation rates (CMARs) and assessed qualitative changes of terrestrially derived OC in the sediment profiles of seven Swedish boreal lakes, in order to evaluate the variability of boreal lake sediments as a C sink over time. CMARs were resolved on a short‐term (centennial) and long‐term (i.e., over millennia of the Holocene) timescale, using radioactive lead (210Pb) and carbon (14C) isotope dating. Sources and degradation state of terrestrially derived OC were identified and characterized by molecular analyses of lignin phenols. We found that CMARs varied substantially on both short‐term and long‐term scales and that the variability was mostly attributed to sedimentation rates and uncoupled from the OC content in the sediment profiles. The lignin phenol analyses revealed that woody material from gymnosperms was a dominant and constant OC source to the sediments over the Holocene. Furthermore, lignin‐based degradation indices, such as acid‐to‐aldehyde ratios, indicated that postdepositional degradation in the sediments was very limited on longer timescales, implying that terrestrial OC is stabilized in the sediments on a permanent basis.
Journal of Geophysical Research: Biogeosciences – Wiley
Published: Sep 1, 2015
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.