Turbulent Kinematic Dynamos in Ellipsoids Driven by Mechanical Forcing

Turbulent Kinematic Dynamos in Ellipsoids Driven by Mechanical Forcing Dynamo action in planetary cores has been extensively studied in the context of convectively driven flows. We show in this letter that mechanical forcings, namely, tides, libration, and precession, are also able to kinematically sustain a magnetic field against ohmic diffusion. Previous attempts published in the literature focused on the laminar response or considered idealized spherical configurations. In contrast, we focus here on the developed turbulent regime and we self‐consistently solve the magnetohydrodynamic equations in an ellipsoidal container. Our results open new avenues of research in dynamo theory where both convection and mechanical forcing can play a role, independently or simultaneously. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Geophysical Research Letters Wiley

Turbulent Kinematic Dynamos in Ellipsoids Driven by Mechanical Forcing

Loading next page...
 
/lp/wiley/turbulent-kinematic-dynamos-in-ellipsoids-driven-by-mechanical-forcing-a7mHweNhDX
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
©2018. American Geophysical Union. All Rights Reserved.
ISSN
0094-8276
eISSN
1944-8007
D.O.I.
10.1002/2017GL076542
Publisher site
See Article on Publisher Site

Abstract

Dynamo action in planetary cores has been extensively studied in the context of convectively driven flows. We show in this letter that mechanical forcings, namely, tides, libration, and precession, are also able to kinematically sustain a magnetic field against ohmic diffusion. Previous attempts published in the literature focused on the laminar response or considered idealized spherical configurations. In contrast, we focus here on the developed turbulent regime and we self‐consistently solve the magnetohydrodynamic equations in an ellipsoidal container. Our results open new avenues of research in dynamo theory where both convection and mechanical forcing can play a role, independently or simultaneously.

Journal

Geophysical Research LettersWiley

Published: Jan 28, 2018

Keywords: ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial