TRYPTOPHAN TRANSPORT ACROSS THE BLOOD‐BRAIN BARRIER DURING ACUTE HEPATIC FAILURE

TRYPTOPHAN TRANSPORT ACROSS THE BLOOD‐BRAIN BARRIER DURING ACUTE HEPATIC FAILURE Abstract— Tryptophan transport across the blood‐brain barrier was studied using a single injection dual isotope label technique, in the following three conditions: normal rats, rats with portacaval shunts, and rats with portacaval shunts followed 65 h later by hepatic artery ligation. In both normal rats and those with acute hepatic failure the tryptophan transport system was found to be comprised of two kinetically distinct components. One component was saturable and obeyed Michaelis‐Menten kinetics (normal: Vmax= 19.5 nmol.min−1.g−1. Km= 113 μM; hepatic failure: Vmax, = 33.8 nmol.min−1.g−1, Km= 108 μM), and the second was a high capacity system which transported tryptophan in direct proportion to concentration over the range tested (normal: K= 0.026 ml.min−1.g−1; hepatic failure: K= 0.067 ml.min−1.g−1). Since the saturable low capacity component transports several neutral amino acids, and their collective plasma concentration is high in relation to the individual Kms, tryptophan transport by this component is reduced by competitive inhibition under physiological conditions. Thus it was calculated that in normal rats approx 40% of tryptophan influx occurs via the high capacity system. During acute hepatic failure transport via both components was increased substantially, approximately doubling the rate of tryptophan penetration of the blood‐brain barrier at all concentrations tested. The contribution by the high capacity component became even more significant than in normal rats, accounting for about 75% of all tryptophan passage from plasma to brain. Brain tryptophan content was 29.9 nmol/g in normal rats and rose to 45.2 nmol/g in rats with portacaval shunts and 50.5 nmol/g in those with acute hepatic failure, correlating with the increased rate of tryptophan transport. In a previous study we found that plasma competing amino acids were greatly increased during acute hepatic failure. Calculations predict that these increased concentrations would cause a reduction in tryptophan transport by the low capacity system. However, because of the increase in the rate of transport by the high capacity component, net tryptophan entry across the blood‐brain barrier was actually increased. This increased rate of transport clearly contributes to the increased content of brain tryptophan found during hepatic failure. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Neurochemistry Wiley

TRYPTOPHAN TRANSPORT ACROSS THE BLOOD‐BRAIN BARRIER DURING ACUTE HEPATIC FAILURE

Loading next page...
 
/lp/wiley/tryptophan-transport-across-the-blood-brain-barrier-during-acute-wkIUnqGBgw
Publisher
Wiley
Copyright
Copyright © 1979 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0022-3042
eISSN
1471-4159
DOI
10.1111/j.1471-4159.1979.tb05170.x
Publisher site
See Article on Publisher Site

Abstract

Abstract— Tryptophan transport across the blood‐brain barrier was studied using a single injection dual isotope label technique, in the following three conditions: normal rats, rats with portacaval shunts, and rats with portacaval shunts followed 65 h later by hepatic artery ligation. In both normal rats and those with acute hepatic failure the tryptophan transport system was found to be comprised of two kinetically distinct components. One component was saturable and obeyed Michaelis‐Menten kinetics (normal: Vmax= 19.5 nmol.min−1.g−1. Km= 113 μM; hepatic failure: Vmax, = 33.8 nmol.min−1.g−1, Km= 108 μM), and the second was a high capacity system which transported tryptophan in direct proportion to concentration over the range tested (normal: K= 0.026 ml.min−1.g−1; hepatic failure: K= 0.067 ml.min−1.g−1). Since the saturable low capacity component transports several neutral amino acids, and their collective plasma concentration is high in relation to the individual Kms, tryptophan transport by this component is reduced by competitive inhibition under physiological conditions. Thus it was calculated that in normal rats approx 40% of tryptophan influx occurs via the high capacity system. During acute hepatic failure transport via both components was increased substantially, approximately doubling the rate of tryptophan penetration of the blood‐brain barrier at all concentrations tested. The contribution by the high capacity component became even more significant than in normal rats, accounting for about 75% of all tryptophan passage from plasma to brain. Brain tryptophan content was 29.9 nmol/g in normal rats and rose to 45.2 nmol/g in rats with portacaval shunts and 50.5 nmol/g in those with acute hepatic failure, correlating with the increased rate of tryptophan transport. In a previous study we found that plasma competing amino acids were greatly increased during acute hepatic failure. Calculations predict that these increased concentrations would cause a reduction in tryptophan transport by the low capacity system. However, because of the increase in the rate of transport by the high capacity component, net tryptophan entry across the blood‐brain barrier was actually increased. This increased rate of transport clearly contributes to the increased content of brain tryptophan found during hepatic failure.

Journal

Journal of NeurochemistryWiley

Published: Aug 1, 1979

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off