Transdifferentiation of human somatic cells by ribosome

Transdifferentiation of human somatic cells by ribosome Ribosomes are intracellular organelles ubiquitous in all organisms, which translate information from mRNAs to synthesize proteins. They are complex macromolecules composed of dozens of proteins and ribosomal RNAs. Other than translation, some ribosomal proteins also have side‐jobs called “Moonlighting” function. The majority of these moonlighting functions influence cancer progression, early development and differentiation. Recently, we discovered that ribosome is involved in the regulation of cellular transdifferentiation of human dermal fibroblasts (HDFs). In vitro incorporation of ribosomes into HDFs arrests cell proliferation and induces the formation of cell clusters, that differentiate into three germ layer derived cells upon induction by differentiation mediums. The discovery of ribosome induced transdifferentiation, that is not based on genetic modification, find new possibilities for the treatment of cancer and congenital diseases, as well as to understand early development and cellular lineage differentiation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Development, Growth & Differentiation Wiley

Transdifferentiation of human somatic cells by ribosome

Loading next page...
 
/lp/wiley/transdifferentiation-of-human-somatic-cells-by-ribosome-pAdI0wlZsD
Publisher
Wiley
Copyright
© 2018 Japanese Society of Developmental Biologists
ISSN
0012-1592
eISSN
1440-169X
D.O.I.
10.1111/dgd.12538
Publisher site
See Article on Publisher Site

Abstract

Ribosomes are intracellular organelles ubiquitous in all organisms, which translate information from mRNAs to synthesize proteins. They are complex macromolecules composed of dozens of proteins and ribosomal RNAs. Other than translation, some ribosomal proteins also have side‐jobs called “Moonlighting” function. The majority of these moonlighting functions influence cancer progression, early development and differentiation. Recently, we discovered that ribosome is involved in the regulation of cellular transdifferentiation of human dermal fibroblasts (HDFs). In vitro incorporation of ribosomes into HDFs arrests cell proliferation and induces the formation of cell clusters, that differentiate into three germ layer derived cells upon induction by differentiation mediums. The discovery of ribosome induced transdifferentiation, that is not based on genetic modification, find new possibilities for the treatment of cancer and congenital diseases, as well as to understand early development and cellular lineage differentiation.

Journal

Development, Growth & DifferentiationWiley

Published: Jan 1, 2018

Keywords: ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off