Trajectory‐based computational study of coherent behavior in flows

Trajectory‐based computational study of coherent behavior in flows The notion of coherence in time‐dependent dynamical systems is used to describe mobile sets that do not freely mix with the surrounding regions in phase space. In particular, coherent behavior has an impact on transport and mixing processes in fluid flows. The mathematical definition and numerical study of coherent structures in flows has received considerable scientific interest for about two decades. However, mathematically sound methodologies typically require full knowledge of the flow field or at least high resolution trajectory data, which may not be available in applications. Recently, different computational methods have been proposed to identify coherent behavior in flows directly from Lagrangian trajectory data, such as obtained from particle tracking algorithms. In this context, spatio‐temporal clustering algorithms have been proven to be very effective for the extraction of coherent sets from sparse and possibly incomplete trajectory data. Inspired by these recent approaches, we consider an unweighted, undirected network, in which Lagrangian particle trajectories serve as network nodes. A link is established between two nodes if the respective trajectories come close to each other at least once in the course of time. Classical graph algorithms are then employed to analyze the resulting network. In particular, spectral graph partitioning schemes allow us to extract coherent sets of the underlying flow. (© 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Proceedings in Applied Mathematics & Mechanics Wiley

Trajectory‐based computational study of coherent behavior in flows

Loading next page...
 
/lp/wiley/trajectory-based-computational-study-of-coherent-behavior-in-flows-mrgrmkSudW
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2017 Wiley Subscription Services
ISSN
1617-7061
eISSN
1617-7061
D.O.I.
10.1002/pamm.201710004
Publisher site
See Article on Publisher Site

Abstract

The notion of coherence in time‐dependent dynamical systems is used to describe mobile sets that do not freely mix with the surrounding regions in phase space. In particular, coherent behavior has an impact on transport and mixing processes in fluid flows. The mathematical definition and numerical study of coherent structures in flows has received considerable scientific interest for about two decades. However, mathematically sound methodologies typically require full knowledge of the flow field or at least high resolution trajectory data, which may not be available in applications. Recently, different computational methods have been proposed to identify coherent behavior in flows directly from Lagrangian trajectory data, such as obtained from particle tracking algorithms. In this context, spatio‐temporal clustering algorithms have been proven to be very effective for the extraction of coherent sets from sparse and possibly incomplete trajectory data. Inspired by these recent approaches, we consider an unweighted, undirected network, in which Lagrangian particle trajectories serve as network nodes. A link is established between two nodes if the respective trajectories come close to each other at least once in the course of time. Classical graph algorithms are then employed to analyze the resulting network. In particular, spectral graph partitioning schemes allow us to extract coherent sets of the underlying flow. (© 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Journal

Proceedings in Applied Mathematics & MechanicsWiley

Published: Jan 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off