Trait interactions help explain plant invasion success in the German flora

Trait interactions help explain plant invasion success in the German flora Summary 1 The search for characteristics that promote invasion success constitutes one of the most challenging tasks in invasion ecology. So far the main focus in multispecies studies of plant invasion success has been on single traits. Only few generalizations have emerged from this work and single traits yielded very limited explanatory power for invasion success. Here we hypothesize that the consideration of ecological strategies, determined by different combinations of traits, will improve explanatory power. 2 To test this hypothesis we analysed the relative importance of 40 traits for species’ invasion success in the German neophytic flora. Success was expressed as map grid cell frequency. After quantifying the relevance of single traits, we quantified the importance of different trait combinations for invasion success by calculating a multiple trait model, with explicit consideration of trait interactions. In all analyses we considered the effects of phylogeny. 3 In general, neither single traits nor phylogenetic relatedness held much explanatory power. In contrast, the amount of variation explained in the multiple trait model was distinctly higher, mainly due to the incorporation of trait interactions. Thus, particular combinations of trait attributes rather than distinctive attributes per se appear to be associated with invasion success. 4 In single trait analysis, traits associated with flowering and reproductive biology, and with ecological tolerance and the residence time of the species were significantly associated with invasion success. Multiple trait analysis revealed that the relationship between the length of flowering season and invasion success was contingent upon pollination modes. Moreover, the success of polyploids and of species with certain vegetative reproductive trait attributes depended on the species’ flowering phenology. 5 Synthesis. Our results indicate that different ecological strategies, determined by particular combinations of traits, can facilitate plant invasion success. Our findings highlight the importance of incorporating trait interactions when testing for characteristics that promote plant invasion success. Improved explanatory power of traits suggests that our new approach can provide an important step forward in the risk assessment and management of new arrivals in regional floras. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Ecology Wiley

Trait interactions help explain plant invasion success in the German flora

Loading next page...
 
/lp/wiley/trait-interactions-help-explain-plant-invasion-success-in-the-german-07nnNXJHBN
Publisher
Wiley
Copyright
© 2008 The Authors. Journal compilation © 2008 British Ecological Society
ISSN
0022-0477
eISSN
1365-2745
D.O.I.
10.1111/j.1365-2745.2008.01406.x
Publisher site
See Article on Publisher Site

Abstract

Summary 1 The search for characteristics that promote invasion success constitutes one of the most challenging tasks in invasion ecology. So far the main focus in multispecies studies of plant invasion success has been on single traits. Only few generalizations have emerged from this work and single traits yielded very limited explanatory power for invasion success. Here we hypothesize that the consideration of ecological strategies, determined by different combinations of traits, will improve explanatory power. 2 To test this hypothesis we analysed the relative importance of 40 traits for species’ invasion success in the German neophytic flora. Success was expressed as map grid cell frequency. After quantifying the relevance of single traits, we quantified the importance of different trait combinations for invasion success by calculating a multiple trait model, with explicit consideration of trait interactions. In all analyses we considered the effects of phylogeny. 3 In general, neither single traits nor phylogenetic relatedness held much explanatory power. In contrast, the amount of variation explained in the multiple trait model was distinctly higher, mainly due to the incorporation of trait interactions. Thus, particular combinations of trait attributes rather than distinctive attributes per se appear to be associated with invasion success. 4 In single trait analysis, traits associated with flowering and reproductive biology, and with ecological tolerance and the residence time of the species were significantly associated with invasion success. Multiple trait analysis revealed that the relationship between the length of flowering season and invasion success was contingent upon pollination modes. Moreover, the success of polyploids and of species with certain vegetative reproductive trait attributes depended on the species’ flowering phenology. 5 Synthesis. Our results indicate that different ecological strategies, determined by particular combinations of traits, can facilitate plant invasion success. Our findings highlight the importance of incorporating trait interactions when testing for characteristics that promote plant invasion success. Improved explanatory power of traits suggests that our new approach can provide an important step forward in the risk assessment and management of new arrivals in regional floras.

Journal

Journal of EcologyWiley

Published: Sep 1, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off