Tracking Bat‐Dispersed Seeds Using Fluorescent Pigment

Tracking Bat‐Dispersed Seeds Using Fluorescent Pigment ABSTRACT Tracking the dispersal of seeds by fruit‐eating animals in tropical rain forests is crucial to further our understanding of plant–frugivore interactions and their impacts upon forest regeneration and plant population dynamics. We tested the feasibility of tracking bat‐dispersed seeds in a Philippine lowland rain forest with the help of fluorescent pigment. The powder was mixed with acetone and sprayed to ripe fruits of fig trees, i.e., Ficus septica and F. variegata. During nightly monitoring using a hand‐held ultraviolet lamp bat deposits (seed‐containing spat outs and feces) could successfully be detected. Distances and directions of deposit sites to the focal trees were recorded and seed shadow areas were analyzed. Bats dispersed most of the seeds less than 50 m away from the parent plants resulting in seed shadow areas < 0.30 ha in size. An in situ fruit preference experiment showed that fluorescent powder is unlikely to deter bats from feeding on ripe figs. In conclusion, the technique is simple, inexpensive, noninvasive, applicable to different fields of research and allows one to follow the fate of seeds from known sources. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biotropica Wiley

Tracking Bat‐Dispersed Seeds Using Fluorescent Pigment

Biotropica, Volume 38 (1) – Jan 1, 2006

Loading next page...
 
/lp/wiley/tracking-bat-dispersed-seeds-using-fluorescent-pigment-fWFGy2PMOp
Publisher
Wiley
Copyright
Copyright © 2006 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0006-3606
eISSN
1744-7429
DOI
10.1111/j.1744-7429.2006.00111.x
Publisher site
See Article on Publisher Site

Abstract

ABSTRACT Tracking the dispersal of seeds by fruit‐eating animals in tropical rain forests is crucial to further our understanding of plant–frugivore interactions and their impacts upon forest regeneration and plant population dynamics. We tested the feasibility of tracking bat‐dispersed seeds in a Philippine lowland rain forest with the help of fluorescent pigment. The powder was mixed with acetone and sprayed to ripe fruits of fig trees, i.e., Ficus septica and F. variegata. During nightly monitoring using a hand‐held ultraviolet lamp bat deposits (seed‐containing spat outs and feces) could successfully be detected. Distances and directions of deposit sites to the focal trees were recorded and seed shadow areas were analyzed. Bats dispersed most of the seeds less than 50 m away from the parent plants resulting in seed shadow areas < 0.30 ha in size. An in situ fruit preference experiment showed that fluorescent powder is unlikely to deter bats from feeding on ripe figs. In conclusion, the technique is simple, inexpensive, noninvasive, applicable to different fields of research and allows one to follow the fate of seeds from known sources.

Journal

BiotropicaWiley

Published: Jan 1, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off