Towards rigorous robust optimal control via generalized high‐order moment expansion

Towards rigorous robust optimal control via generalized high‐order moment expansion This study is concerned with the rigorous solution of worst‐case robust optimal control problems having bounded time‐varying uncertainty and nonlinear dynamics with affine uncertainty dependence. We propose an algorithm that combines existing uncertainty set‐propagation and moment‐expansion approaches. Specifically, we consider a high‐order moment expansion of the time‐varying uncertainty, and we bound the effect of the infinite‐dimensional remainder term on the system state, in a rigorous manner, using ellipsoidal calculus. We prove that the error introduced by the expansion converges to zero as more moments are added. Moreover, we describe a methodology to construct a conservative, yet more computationally tractable, robust optimization problem, whose solution values are also shown to converge to those of the original robust optimal control problem. We illustrate the applicability and accuracy of this approach with the robust time‐optimal control of a motorized robot arm. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Optimal Control Applications and Methods Wiley

Towards rigorous robust optimal control via generalized high‐order moment expansion

Loading next page...
 
/lp/wiley/towards-rigorous-robust-optimal-control-via-generalized-high-order-bFlOdYQdOc
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
0143-2087
eISSN
1099-1514
D.O.I.
10.1002/oca.2309
Publisher site
See Article on Publisher Site

Abstract

This study is concerned with the rigorous solution of worst‐case robust optimal control problems having bounded time‐varying uncertainty and nonlinear dynamics with affine uncertainty dependence. We propose an algorithm that combines existing uncertainty set‐propagation and moment‐expansion approaches. Specifically, we consider a high‐order moment expansion of the time‐varying uncertainty, and we bound the effect of the infinite‐dimensional remainder term on the system state, in a rigorous manner, using ellipsoidal calculus. We prove that the error introduced by the expansion converges to zero as more moments are added. Moreover, we describe a methodology to construct a conservative, yet more computationally tractable, robust optimization problem, whose solution values are also shown to converge to those of the original robust optimal control problem. We illustrate the applicability and accuracy of this approach with the robust time‐optimal control of a motorized robot arm.

Journal

Optimal Control Applications and MethodsWiley

Published: Jan 1, 2018

Keywords: ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off