Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents

Towards novel approaches to modelling biotic interactions in multispecies assemblages at large... Aim Biotic interactions – within guilds or across trophic levels – have widely been ignored in species distribution models (SDMs). This synthesis outlines the development of ‘species interaction distribution models’ (SIDMs), which aim to incorporate multispecies interactions at large spatial extents using interaction matrices. Location Local to global. Methods We review recent approaches for extending classical SDMs to incorporate biotic interactions, and identify some methodological and conceptual limitations. To illustrate possible directions for conceptual advancement we explore three principal ways of modelling multispecies interactions using interaction matrices: simple qualitative linkages between species, quantitative interaction coefficients reflecting interaction strengths, and interactions mediated by interaction currencies. We explain methodological advancements for static interaction data and multispecies time series, and outline methods to reduce complexity when modelling multispecies interactions. Results Classical SDMs ignore biotic interactions and recent SDM extensions only include the unidirectional influence of one or a few species. However, novel methods using error matrices in multivariate regression models allow interactions between multiple species to be modelled explicitly with spatial co‐occurrence data. If time series are available, multivariate versions of population dynamic models can be applied that account for the effects and relative importance of species interactions and environmental drivers. These methods need to be extended by incorporating the non‐stationarity in interaction coefficients across space and time, and are challenged by the limited empirical knowledge on spatio‐temporal variation in the existence and strength of species interactions. Model complexity may be reduced by: (1) using prior ecological knowledge to set a subset of interaction coefficients to zero, (2) modelling guilds and functional groups rather than individual species, and (3) modelling interaction currencies and species’ effect and response traits. Main conclusions There is great potential for developing novel approaches that incorporate multispecies interactions into the projection of species distributions and community structure at large spatial extents. Progress can be made by: (1) developing statistical models with interaction matrices for multispecies co‐occurrence datasets across large‐scale environmental gradients, (2) testing the potential and limitations of methods for complexity reduction, and (3) sampling and monitoring comprehensive spatio‐temporal data on biotic interactions in multispecies communities. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Biogeography Wiley

Loading next page...
 
/lp/wiley/towards-novel-approaches-to-modelling-biotic-interactions-in-fvUsZV5buX
Publisher
Wiley
Copyright
© 2011 Blackwell Publishing Ltd
ISSN
0305-0270
eISSN
1365-2699
DOI
10.1111/j.1365-2699.2011.02663.x
Publisher site
See Article on Publisher Site

Abstract

Aim Biotic interactions – within guilds or across trophic levels – have widely been ignored in species distribution models (SDMs). This synthesis outlines the development of ‘species interaction distribution models’ (SIDMs), which aim to incorporate multispecies interactions at large spatial extents using interaction matrices. Location Local to global. Methods We review recent approaches for extending classical SDMs to incorporate biotic interactions, and identify some methodological and conceptual limitations. To illustrate possible directions for conceptual advancement we explore three principal ways of modelling multispecies interactions using interaction matrices: simple qualitative linkages between species, quantitative interaction coefficients reflecting interaction strengths, and interactions mediated by interaction currencies. We explain methodological advancements for static interaction data and multispecies time series, and outline methods to reduce complexity when modelling multispecies interactions. Results Classical SDMs ignore biotic interactions and recent SDM extensions only include the unidirectional influence of one or a few species. However, novel methods using error matrices in multivariate regression models allow interactions between multiple species to be modelled explicitly with spatial co‐occurrence data. If time series are available, multivariate versions of population dynamic models can be applied that account for the effects and relative importance of species interactions and environmental drivers. These methods need to be extended by incorporating the non‐stationarity in interaction coefficients across space and time, and are challenged by the limited empirical knowledge on spatio‐temporal variation in the existence and strength of species interactions. Model complexity may be reduced by: (1) using prior ecological knowledge to set a subset of interaction coefficients to zero, (2) modelling guilds and functional groups rather than individual species, and (3) modelling interaction currencies and species’ effect and response traits. Main conclusions There is great potential for developing novel approaches that incorporate multispecies interactions into the projection of species distributions and community structure at large spatial extents. Progress can be made by: (1) developing statistical models with interaction matrices for multispecies co‐occurrence datasets across large‐scale environmental gradients, (2) testing the potential and limitations of methods for complexity reduction, and (3) sampling and monitoring comprehensive spatio‐temporal data on biotic interactions in multispecies communities.

Journal

Journal of BiogeographyWiley

Published: Dec 1, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off