Tidal Triggering of Microearthquakes Over an Eruption Cycle at 9°50'N East Pacific Rise

Tidal Triggering of Microearthquakes Over an Eruption Cycle at 9°50'N East Pacific Rise Studies have found that earthquake timing often correlates with tides at mid‐ocean ridges and some terrestrial settings. Studies have also suggested that tidal triggering may preferentially happen when a region is critically stressed, making it a potential tool to forecast earthquakes and volcanic eruptions. We examine tidal triggering of ∼100,000 microearthquakes near 9°50'N East Pacific Rise recorded between October 2003 and January 2007, which encompasses an eruption in January 2006. This allows us to look at how tidal triggering signal varies over an eruption cycle to examine its utility as a forecasting tool. We find that tidal triggering signal is strong but does not vary systematically in the 2+ years leading up to the eruption. However, tidal triggering signal disappears immediately posteruption. Our findings suggest that tidal triggering variation may not be useful for forecasting mid‐ocean ridge eruptions over a 2+ year timescale but might be useful over a longer timescale. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Geophysical Research Letters Wiley

Tidal Triggering of Microearthquakes Over an Eruption Cycle at 9°50'N East Pacific Rise

Loading next page...
 
/lp/wiley/tidal-triggering-of-microearthquakes-over-an-eruption-cycle-at-9-50-n-qBYN0mNQ0P
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
©2018. American Geophysical Union. All Rights Reserved.
ISSN
0094-8276
eISSN
1944-8007
D.O.I.
10.1002/2017GL076497
Publisher site
See Article on Publisher Site

Abstract

Studies have found that earthquake timing often correlates with tides at mid‐ocean ridges and some terrestrial settings. Studies have also suggested that tidal triggering may preferentially happen when a region is critically stressed, making it a potential tool to forecast earthquakes and volcanic eruptions. We examine tidal triggering of ∼100,000 microearthquakes near 9°50'N East Pacific Rise recorded between October 2003 and January 2007, which encompasses an eruption in January 2006. This allows us to look at how tidal triggering signal varies over an eruption cycle to examine its utility as a forecasting tool. We find that tidal triggering signal is strong but does not vary systematically in the 2+ years leading up to the eruption. However, tidal triggering signal disappears immediately posteruption. Our findings suggest that tidal triggering variation may not be useful for forecasting mid‐ocean ridge eruptions over a 2+ year timescale but might be useful over a longer timescale.

Journal

Geophysical Research LettersWiley

Published: Jan 28, 2018

Keywords: ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off