Thresholds for gully initiation and sedimentation in Mediterranean Europe

Thresholds for gully initiation and sedimentation in Mediterranean Europe In Mediterranean areas the dynamics of gully development act as an important indicator of desertification. However, little is known about the influence of climate and land‐use changes, and almost no field data exist to assess the sensitivity of a landscape to gully erosion. Two important components of gully erosion studies are the prediction of where gullies begin and where they end. To address some of these issues, topographical thresholds for gully initiation and sedimentation in six different Mediterranean study areas were established. Field measurements of local soil surface slope (S) and drainage‐basin area (A) at the point of initiation of ephemeral gullies in intensively cultivated fields (five datasets) and permanent gullies in rangelands (three datasets) were carried out. A negative power relationship of the form S = aA−b was fitted through all datasets, and defined as the mean topographical threshold for gullying in the respective area. Topographically controlled slopes of sedimentation at the gully bottom were also measured. Compared to theoretical relationships for channel initiation by overland flow, relatively low values for b are obtained, suggesting a dominance of overland flow and an influence of subsurface flow. The influence of landsliding at steeper slopes appeared from the flattening of the overall negative trend in the higher slope range (S > 0·30) of the integrated dataset. Comparing the threshold lines of our datasets to the average trend lines through data found in literature revealed that vegetation type and cover could better explain differences in topographical thresholds level than climatic conditions. In cultivated fields, soil structure and moisture conditions, as determined by the rainfall distribution, are critical factors influencing topographical thresholds rather than daily rainfall amounts of the gully‐initiating events. In rangelands, vegetation cover at the time of incision appears to be the most important factor differentiating between topographical thresholds, overruling the effect of average annual rainfall amounts. Soil texture and rock fragment cover contributed little to the explanation of the relative threshold levels. Differences in regression slopes (b) between the S–A relationships found in this study have been attributed to the soil characteristics in the different study areas, determining the relative importance of subsurface flow and Hortonian overland flow. Sedimentation slopes where both ephemeral and permanent gullies end were generally high because of the high rock fragment content of the transported sediment. A positive relationship was found between the rock fragment content at the apex of the sedimentation fan and the slope of the soil surface at this location. Copyright © 2000 John Wiley & Sons, Ltd. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Earth Surface Processes and Landforms Wiley

Thresholds for gully initiation and sedimentation in Mediterranean Europe

Loading next page...
 
/lp/wiley/thresholds-for-gully-initiation-and-sedimentation-in-mediterranean-PqnAqGK0z0
Publisher
Wiley
Copyright
Copyright © 2000 Wiley Subscription Services
ISSN
0197-9337
eISSN
1096-9837
D.O.I.
10.1002/1096-9837(200010)25:11<1201::AID-ESP131>3.0.CO;2-L
Publisher site
See Article on Publisher Site

Abstract

In Mediterranean areas the dynamics of gully development act as an important indicator of desertification. However, little is known about the influence of climate and land‐use changes, and almost no field data exist to assess the sensitivity of a landscape to gully erosion. Two important components of gully erosion studies are the prediction of where gullies begin and where they end. To address some of these issues, topographical thresholds for gully initiation and sedimentation in six different Mediterranean study areas were established. Field measurements of local soil surface slope (S) and drainage‐basin area (A) at the point of initiation of ephemeral gullies in intensively cultivated fields (five datasets) and permanent gullies in rangelands (three datasets) were carried out. A negative power relationship of the form S = aA−b was fitted through all datasets, and defined as the mean topographical threshold for gullying in the respective area. Topographically controlled slopes of sedimentation at the gully bottom were also measured. Compared to theoretical relationships for channel initiation by overland flow, relatively low values for b are obtained, suggesting a dominance of overland flow and an influence of subsurface flow. The influence of landsliding at steeper slopes appeared from the flattening of the overall negative trend in the higher slope range (S > 0·30) of the integrated dataset. Comparing the threshold lines of our datasets to the average trend lines through data found in literature revealed that vegetation type and cover could better explain differences in topographical thresholds level than climatic conditions. In cultivated fields, soil structure and moisture conditions, as determined by the rainfall distribution, are critical factors influencing topographical thresholds rather than daily rainfall amounts of the gully‐initiating events. In rangelands, vegetation cover at the time of incision appears to be the most important factor differentiating between topographical thresholds, overruling the effect of average annual rainfall amounts. Soil texture and rock fragment cover contributed little to the explanation of the relative threshold levels. Differences in regression slopes (b) between the S–A relationships found in this study have been attributed to the soil characteristics in the different study areas, determining the relative importance of subsurface flow and Hortonian overland flow. Sedimentation slopes where both ephemeral and permanent gullies end were generally high because of the high rock fragment content of the transported sediment. A positive relationship was found between the rock fragment content at the apex of the sedimentation fan and the slope of the soil surface at this location. Copyright © 2000 John Wiley & Sons, Ltd.

Journal

Earth Surface Processes and LandformsWiley

Published: Jan 1, 2000

Keywords: ; ; ; ;

References

  • Hydraulics of runoff and loess loam deposition
    De Ploey, J
  • Erosion thresholds and land surface morphology
    Dietrich, WE; Wilson, CJ; Montgomery, DR; McKean, J; Bauer, R
  • Process Models and Theoretical Geomorphology
    Montgomery, D.R.; Dietrich, W.E.
  • Prediction of surface saturation zones in natural catchments by topographic analysis
    O'Loughlin, E.M.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off