Three‐Dimensional, Transient, Saturated‐Unsaturated Flow in a Groundwater Basin

Three‐Dimensional, Transient, Saturated‐Unsaturated Flow in a Groundwater Basin A three‐dimensional finite difference model has been developed for the treatment of saturated‐unsaturated transient flow in small nonhomogeneous, anisotropic geologic basins. The uniqueness of the model lies in its inclusion of the unsaturated zone in a basin wide model that can also handle both confined and unconfined saturated aquifers, under both natural and developed conditions. The integrated equation of flow is solved by the line successive overrelaxation technique. The model allows any generalized region shape and any configuration of time variant boundary conditions. When applied to natural flow systems, the model provides quantitative hydrographs of surface infiltration, groundwater recharge, water table depth, and stream base flow. Results of simulations for hypothetical basins provide insight into the mechanisms involved in the development of perched water tables. The unsaturated basin response is identified as the controlling factor in determining the nature of the base flow hydrograph. Application of the model to developed basins allows one to simulate not only the manner in which groundwater withdrawals are transmitted through the aquifers, but also the changes in the rates of groundwater recharge and discharge induced by the withdrawals. For any proposed pumping pattern, it is possible to predict the maximum basin yield that can be sustained by a flow system in equilibrium with the recharge‐discharge characteristics of the basin. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Water Resources Research Wiley

Three‐Dimensional, Transient, Saturated‐Unsaturated Flow in a Groundwater Basin

Water Resources Research, Volume 7 (2) – Apr 1, 1971

Loading next page...
 
/lp/wiley/three-dimensional-transient-saturated-unsaturated-flow-in-a-YQd9k7gn3M
Publisher
Wiley
Copyright
Copyright © 1971 by the American Geophysical Union.
ISSN
0043-1397
eISSN
1944-7973
DOI
10.1029/WR007i002p00347
Publisher site
See Article on Publisher Site

Abstract

A three‐dimensional finite difference model has been developed for the treatment of saturated‐unsaturated transient flow in small nonhomogeneous, anisotropic geologic basins. The uniqueness of the model lies in its inclusion of the unsaturated zone in a basin wide model that can also handle both confined and unconfined saturated aquifers, under both natural and developed conditions. The integrated equation of flow is solved by the line successive overrelaxation technique. The model allows any generalized region shape and any configuration of time variant boundary conditions. When applied to natural flow systems, the model provides quantitative hydrographs of surface infiltration, groundwater recharge, water table depth, and stream base flow. Results of simulations for hypothetical basins provide insight into the mechanisms involved in the development of perched water tables. The unsaturated basin response is identified as the controlling factor in determining the nature of the base flow hydrograph. Application of the model to developed basins allows one to simulate not only the manner in which groundwater withdrawals are transmitted through the aquifers, but also the changes in the rates of groundwater recharge and discharge induced by the withdrawals. For any proposed pumping pattern, it is possible to predict the maximum basin yield that can be sustained by a flow system in equilibrium with the recharge‐discharge characteristics of the basin.

Journal

Water Resources ResearchWiley

Published: Apr 1, 1971

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off