Theoretical study and experimental validation on the energy dissipation mechanism of particle dampers

Theoretical study and experimental validation on the energy dissipation mechanism of particle... An energy dissipation factor was proposed to quantify the energy dissipation mechanism of particle dampers based on theoretical analysis and was further validated by free vibration tests and wind tunnel tests. The vibration energy of the main structure was consumed by impact and friction between particles and between particles and the container. An elastoplastic collision model and a simplified frictional‐elastic collision model were used to analyze the energy dissipation due to impact and friction, respectively. Then, an energy dissipation factor, reflecting the vibration energy consumption of a particle damper, was defined. Finally, free vibration tests and aero‐elastic wind tunnel tests of a benchmark model unattached or attached with particle dampers were conducted to validate the relationship between the vibration reduction performances and the energy dissipation factors, and the experimental results were in qualitative agreement with the theoretical results. Consequently, the energy dissipation factor indicated the energy dissipation mechanism of particle dampers and can be used to select the proper material of the particles, helping to maximize the vibration control effects from the material's perspective. It was shown that the material of higher kinetic friction coefficient, higher modulus of elasticity, and lower yield strength usually leads to better energy dissipation effects. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Structural Control and Health Monitoring Wiley

Theoretical study and experimental validation on the energy dissipation mechanism of particle dampers

Loading next page...
 
/lp/wiley/theoretical-study-and-experimental-validation-on-the-energy-G0ZAzLuvSg
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
1545-2255
eISSN
1545-2263
D.O.I.
10.1002/stc.2125
Publisher site
See Article on Publisher Site

Abstract

An energy dissipation factor was proposed to quantify the energy dissipation mechanism of particle dampers based on theoretical analysis and was further validated by free vibration tests and wind tunnel tests. The vibration energy of the main structure was consumed by impact and friction between particles and between particles and the container. An elastoplastic collision model and a simplified frictional‐elastic collision model were used to analyze the energy dissipation due to impact and friction, respectively. Then, an energy dissipation factor, reflecting the vibration energy consumption of a particle damper, was defined. Finally, free vibration tests and aero‐elastic wind tunnel tests of a benchmark model unattached or attached with particle dampers were conducted to validate the relationship between the vibration reduction performances and the energy dissipation factors, and the experimental results were in qualitative agreement with the theoretical results. Consequently, the energy dissipation factor indicated the energy dissipation mechanism of particle dampers and can be used to select the proper material of the particles, helping to maximize the vibration control effects from the material's perspective. It was shown that the material of higher kinetic friction coefficient, higher modulus of elasticity, and lower yield strength usually leads to better energy dissipation effects.

Journal

Structural Control and Health MonitoringWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial