The use of item parcels in structural equation modelling: Non‐normal data and small sample sizes

The use of item parcels in structural equation modelling: Non‐normal data and small sample sizes Maximum likelihood estimation in confirmatory factor analysis requires large sample sizes, normally distributed item responses, and reliable indicators of each latent construct, but these ideals are rarely met. We examine alternative strategies for dealing with non‐normal data, particularly when the sample size is small. In two simulation studies, we systematically varied: the degree of non‐normality; the sample size from 50 to 1000; the way of indicator formation, comparing items versus parcels; the parcelling strategy, evaluating uniformly positively skews and kurtosis parcels versus those with counterbalancing skews and kurtosis; and the estimation procedure, contrasting maximum likelihood and asymptotically distribution‐free methods. We evaluated the convergence behaviour of solutions, as well as the systematic bias and variability of parameter estimates, and goodness of fit. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png British Journal of Mathematical and Statistical Psychology Wiley

The use of item parcels in structural equation modelling: Non‐normal data and small sample sizes

Loading next page...
 
/lp/wiley/the-use-of-item-parcels-in-structural-equation-modelling-non-normal-HmRQGs71aO
Publisher site
See Article on Publisher Site

Abstract

Maximum likelihood estimation in confirmatory factor analysis requires large sample sizes, normally distributed item responses, and reliable indicators of each latent construct, but these ideals are rarely met. We examine alternative strategies for dealing with non‐normal data, particularly when the sample size is small. In two simulation studies, we systematically varied: the degree of non‐normality; the sample size from 50 to 1000; the way of indicator formation, comparing items versus parcels; the parcelling strategy, evaluating uniformly positively skews and kurtosis parcels versus those with counterbalancing skews and kurtosis; and the estimation procedure, contrasting maximum likelihood and asymptotically distribution‐free methods. We evaluated the convergence behaviour of solutions, as well as the systematic bias and variability of parameter estimates, and goodness of fit.

Journal

British Journal of Mathematical and Statistical PsychologyWiley

Published: Nov 1, 2004

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off