The tectonic expression slab pull at continental convergent boundaries

The tectonic expression slab pull at continental convergent boundaries Examination of five thrust belt systems developed at continental subduction boundaries suggests that they comprise two distinct groups that display pronounced and systematic differences in structural style, topographic elevation, denudation, metamorphism, postcollisional convergence, and foredeep basin geometry and facies. The distinctive geological features developed within each thrust belt group appear to be causally linked to the relative rates of subduction and convergence via the magnitude of horizontal compressional stress transmitted across the subduction boundary. At subduction boundaries where the rate of overall plate convergence is less than the rate of subduction (termed here retreating subduction boundaries) the transmission of horizontal compressive stress across the plate boundary is small, and regional deformation of the overriding plate is by horizontal extension. The tectonic expression of these retreating subduction boundaries includes topographically low mountains, little erosion or denudation, low‐grade to no metamorphism, little to no involvement of crystalline basement in shortening, little to no postcollisional convergence, anomalously deep foredeep basins, and a protracted history of flysch deposition within the adjacent foredeep basin. Analysis of deflection and gravity data across three retreating subduction boundaries (Apennine, Carpathian and Hellenic systems) shows that subduction is driven by gravitational forces acting on dense subducted slabs at depths between about 40 and 80 km (Carpathians), 50 and 150 km (Apennines) and 50 and 250 km (Hellenides). The total mass anomalies represented by the slabs are approximately 3×1012, 6×1012 and 12×1012 N/m, respectively. The slabs are partially supported by flexural stresses transmitted through the subducted lithosphere to the foreland, and partially supported by dynamic (viscous) stresses in the asthenosphere. At subduction boundaries where the rate of overall plate convergence is greater than the rate of subduction (termed here advancing subduction boundaries) the transmission of horizontal compressive stress across the plate boundary is large, and regional deformation of the overriding plate is by horizontal shortening. The tectonic expression of these advancing subduction boundaries includes topographically high mountains, antithetic thrust belts, large amounts of erosion and denudation, exposure of high‐grade metamorphic rocks at the surface, extensive deformation of crystalline basement to midcrustal depths, protracted postcollisional convergence (tens of millions of years), and a protracted history of molasse deposition within the adjacent foredeep basins. Analysis of gravity and deflection data across two advancing subduction boundaries developed within the continental lithosphere (Western to Eastern and Southern Alps and Himalayas) shows that the thrust sheets have been translated for great distances over the foreland lithosphere (relative to the point at which the subduction forces are applied), thus obscuring any flexural and gravity signals from the subducted slab. However, it appears that far‐field stresses, presumably related to global plate motions, drive most of the convergent motion across these subduction boundaries. The concept that orogenic belts formed above retreating subduction boundaries have recognizable tectonic signatures that differ from those of orogenic belts formed above advancing subduction boundaries suggests that it may be possible to interpret the plate boundary settings in which ancient orogenic belts evolved. Appendix B is available with entire article on microfiche.Order from the American Geophysical Union, 2000 FloridaAvenue, N.W., Washington, D.C. 20009. Document T92‐004; $2.50. Payment must accompany order. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Tectonics Wiley

The tectonic expression slab pull at continental convergent boundaries

Tectonics, Volume 12 (2) – Apr 1, 1993

Loading next page...
 
/lp/wiley/the-tectonic-expression-slab-pull-at-continental-convergent-boundaries-OYC73xHNOU
Publisher
Wiley
Copyright
Copyright © 1993 by the American Geophysical Union.
ISSN
0278-7407
eISSN
1944-9194
DOI
10.1029/92TC02248
Publisher site
See Article on Publisher Site

Abstract

Examination of five thrust belt systems developed at continental subduction boundaries suggests that they comprise two distinct groups that display pronounced and systematic differences in structural style, topographic elevation, denudation, metamorphism, postcollisional convergence, and foredeep basin geometry and facies. The distinctive geological features developed within each thrust belt group appear to be causally linked to the relative rates of subduction and convergence via the magnitude of horizontal compressional stress transmitted across the subduction boundary. At subduction boundaries where the rate of overall plate convergence is less than the rate of subduction (termed here retreating subduction boundaries) the transmission of horizontal compressive stress across the plate boundary is small, and regional deformation of the overriding plate is by horizontal extension. The tectonic expression of these retreating subduction boundaries includes topographically low mountains, little erosion or denudation, low‐grade to no metamorphism, little to no involvement of crystalline basement in shortening, little to no postcollisional convergence, anomalously deep foredeep basins, and a protracted history of flysch deposition within the adjacent foredeep basin. Analysis of deflection and gravity data across three retreating subduction boundaries (Apennine, Carpathian and Hellenic systems) shows that subduction is driven by gravitational forces acting on dense subducted slabs at depths between about 40 and 80 km (Carpathians), 50 and 150 km (Apennines) and 50 and 250 km (Hellenides). The total mass anomalies represented by the slabs are approximately 3×1012, 6×1012 and 12×1012 N/m, respectively. The slabs are partially supported by flexural stresses transmitted through the subducted lithosphere to the foreland, and partially supported by dynamic (viscous) stresses in the asthenosphere. At subduction boundaries where the rate of overall plate convergence is greater than the rate of subduction (termed here advancing subduction boundaries) the transmission of horizontal compressive stress across the plate boundary is large, and regional deformation of the overriding plate is by horizontal shortening. The tectonic expression of these advancing subduction boundaries includes topographically high mountains, antithetic thrust belts, large amounts of erosion and denudation, exposure of high‐grade metamorphic rocks at the surface, extensive deformation of crystalline basement to midcrustal depths, protracted postcollisional convergence (tens of millions of years), and a protracted history of molasse deposition within the adjacent foredeep basins. Analysis of gravity and deflection data across two advancing subduction boundaries developed within the continental lithosphere (Western to Eastern and Southern Alps and Himalayas) shows that the thrust sheets have been translated for great distances over the foreland lithosphere (relative to the point at which the subduction forces are applied), thus obscuring any flexural and gravity signals from the subducted slab. However, it appears that far‐field stresses, presumably related to global plate motions, drive most of the convergent motion across these subduction boundaries. The concept that orogenic belts formed above retreating subduction boundaries have recognizable tectonic signatures that differ from those of orogenic belts formed above advancing subduction boundaries suggests that it may be possible to interpret the plate boundary settings in which ancient orogenic belts evolved. Appendix B is available with entire article on microfiche.Order from the American Geophysical Union, 2000 FloridaAvenue, N.W., Washington, D.C. 20009. Document T92‐004; $2.50. Payment must accompany order.

Journal

TectonicsWiley

Published: Apr 1, 1993

References

  • Main differences between thrust belts
    Doglioni, Doglioni
  • Relations among subduction parameters
    Jarrard, Jarrard
  • Gravity anomalies, flexure of the Indian plate, and the structure, support,and evolution of Himalaya and Ganga Basin
    Lyon‐Caen, Lyon‐Caen; Molnar, Molnar

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off