The spatial distribution of birds and carabid beetles in pine plantation forests: the role of landscape composition and structure

The spatial distribution of birds and carabid beetles in pine plantation forests: the role of... Aim To evaluate the joint and independent effects of spatial location, landscape composition and landscape structure on the distribution patterns of bird and carabid beetle assemblages in a mosaic landscape dominated by pine plantation forests. Location A continuous 3000‐ha landscape mosaic with native maritime pine Pinus pinaster plantations of different ages, deciduous woodlands and open habitats, located in the Landes de Gascogne forest of south‐western France. Methods We sampled breeding birds by 20‐min point counts and carabid beetles by pitfall trapping using a systematic grid sampling of 200 points every 400 m over the whole landscape. Explanatory variables were composed of three data sets derived from GIS habitat mapping: (1) spatial variables (polynomial terms of geographical coordinates of samples), (2) landscape composition as the percentage cover of the six main habitats, and (3) landscape structure metrics including indices of fragmentation and spatial heterogeneity. We used canonical correspondence analysis with variance partitioning to evaluate the joint and independent effects of the three sets of variables on the ordination of species assemblages. Moran's I correlograms and Mantel tests were used to assess for spatial structure in species distribution and relationships with separate landscape attributes. Results Landscape composition was the main factor explaining the distribution patterns of birds and carabids at the mesoscale of 400 × 400 m. Independent effects of spatial variables and landscape structure were still significant for bird assemblages once landscape composition was controlled for, but not for carabid assemblages. Spatial distributions of birds and carabids were primarily influenced by the amount of heathlands, young pine plantations, herbaceous firebreaks and deciduous woodlands. Deciduous woodland species had positive responses to edge density, while open habitat species were positively associated with mean patch area. Main conclusions Forest birds were favoured by an increase in deciduous woodland cover and landscape heterogeneity, but there was no evidence for a similar effect on carabid beetles. Fragmentation of open habitats negatively affected both early‐successional birds and carabids, specialist species being restricted to large heathlands and young plantations. Several birds of conservation concern were associated with mosaics of woodlands and grasslands, especially meadows and firebreaks. Conserving biodiversity in mosaic plantation landscapes could be achieved by the maintenance of a significant amount of early‐successional habitats and deciduous woodland patches within a conifer plantation matrix. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Biogeography Wiley

The spatial distribution of birds and carabid beetles in pine plantation forests: the role of landscape composition and structure

Loading next page...
 
/lp/wiley/the-spatial-distribution-of-birds-and-carabid-beetles-in-pine-nuhlxeDmCB
Publisher
Wiley
Copyright
Copyright © 2007 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0305-0270
eISSN
1365-2699
D.O.I.
10.1111/j.1365-2699.2006.01656.x
Publisher site
See Article on Publisher Site

Abstract

Aim To evaluate the joint and independent effects of spatial location, landscape composition and landscape structure on the distribution patterns of bird and carabid beetle assemblages in a mosaic landscape dominated by pine plantation forests. Location A continuous 3000‐ha landscape mosaic with native maritime pine Pinus pinaster plantations of different ages, deciduous woodlands and open habitats, located in the Landes de Gascogne forest of south‐western France. Methods We sampled breeding birds by 20‐min point counts and carabid beetles by pitfall trapping using a systematic grid sampling of 200 points every 400 m over the whole landscape. Explanatory variables were composed of three data sets derived from GIS habitat mapping: (1) spatial variables (polynomial terms of geographical coordinates of samples), (2) landscape composition as the percentage cover of the six main habitats, and (3) landscape structure metrics including indices of fragmentation and spatial heterogeneity. We used canonical correspondence analysis with variance partitioning to evaluate the joint and independent effects of the three sets of variables on the ordination of species assemblages. Moran's I correlograms and Mantel tests were used to assess for spatial structure in species distribution and relationships with separate landscape attributes. Results Landscape composition was the main factor explaining the distribution patterns of birds and carabids at the mesoscale of 400 × 400 m. Independent effects of spatial variables and landscape structure were still significant for bird assemblages once landscape composition was controlled for, but not for carabid assemblages. Spatial distributions of birds and carabids were primarily influenced by the amount of heathlands, young pine plantations, herbaceous firebreaks and deciduous woodlands. Deciduous woodland species had positive responses to edge density, while open habitat species were positively associated with mean patch area. Main conclusions Forest birds were favoured by an increase in deciduous woodland cover and landscape heterogeneity, but there was no evidence for a similar effect on carabid beetles. Fragmentation of open habitats negatively affected both early‐successional birds and carabids, specialist species being restricted to large heathlands and young plantations. Several birds of conservation concern were associated with mosaics of woodlands and grasslands, especially meadows and firebreaks. Conserving biodiversity in mosaic plantation landscapes could be achieved by the maintenance of a significant amount of early‐successional habitats and deciduous woodland patches within a conifer plantation matrix.

Journal

Journal of BiogeographyWiley

Published: Apr 1, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off