The SOC1 MADS‐box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis

The SOC1 MADS‐box gene integrates vernalization and gibberellin signals for flowering in... Summary The floral transition in Arabidopsis is regulated by at least four flowering pathways: the long‐day, autonomous, vernalization, and gibberellin (GA)‐dependent pathways. Previously, we reported that the MADS‐box transcription factor SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1) integrates the long‐day and vernalization/autonomous pathways. Here, we present evidences that SOC1 also integrates signaling from the GA‐dependent pathway, a major flowering pathway under non‐inductive short days. Under short days, the flowering time of GA‐biosynthetic and ‐signaling mutants was well correlated with the level of SOC1 expression; overexpression of SOC1 rescued the non‐flowering phenotype of ga1‐3, and the soc1 null mutant showed reduced sensitivity to GA for flowering. In addition, we show that vernalization‐induced repression of FLOWERING LOCUS C (FLC), an upstream negative regulator of SOC1, is not sufficient to activate SOC1; positive factors are also required. Under short days, the GA pathway provides a positive factor for SOC1 activation. In contrast to SOC1, the GA pathway does not regulate expression of other flowering integrators FLC and FT. Our results explain why the GA pathway has a strong effect on flowering under short days and how vernalization and GA interact at the molecular level. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Plant Journal Wiley

The SOC1 MADS‐box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis

Loading next page...
 
/lp/wiley/the-soc1-mads-box-gene-integrates-vernalization-and-gibberellin-t6fTDiWxuA
Publisher
Wiley
Copyright
Copyright © 2003 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0960-7412
eISSN
1365-313X
D.O.I.
10.1046/j.1365-313X.2003.01833.x
Publisher site
See Article on Publisher Site

Abstract

Summary The floral transition in Arabidopsis is regulated by at least four flowering pathways: the long‐day, autonomous, vernalization, and gibberellin (GA)‐dependent pathways. Previously, we reported that the MADS‐box transcription factor SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1) integrates the long‐day and vernalization/autonomous pathways. Here, we present evidences that SOC1 also integrates signaling from the GA‐dependent pathway, a major flowering pathway under non‐inductive short days. Under short days, the flowering time of GA‐biosynthetic and ‐signaling mutants was well correlated with the level of SOC1 expression; overexpression of SOC1 rescued the non‐flowering phenotype of ga1‐3, and the soc1 null mutant showed reduced sensitivity to GA for flowering. In addition, we show that vernalization‐induced repression of FLOWERING LOCUS C (FLC), an upstream negative regulator of SOC1, is not sufficient to activate SOC1; positive factors are also required. Under short days, the GA pathway provides a positive factor for SOC1 activation. In contrast to SOC1, the GA pathway does not regulate expression of other flowering integrators FLC and FT. Our results explain why the GA pathway has a strong effect on flowering under short days and how vernalization and GA interact at the molecular level.

Journal

The Plant JournalWiley

Published: Sep 1, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off