The seasonal response of a general circulation model to changes in CO 2 and sea temperatures

The seasonal response of a general circulation model to changes in CO 2 and sea temperatures The seasonal response of an atmospheric general circulation model to changes in atmospheric carbon dioxide concentrations and sea surface temperatures is discussed. The model has five layers and a quasi‐uniform 330km horizontal grid. Sea surface temperatures, sea ice extents, and zonally mean cloud amounts are prescribed from climatology, so that feedbacks between these variables and the rest of the model are ignored. Soil moisture, snow depth and boundary layer height are modelled explicitly, and both diurnal and seasonal variations of solar zenith angle are included. Two experiments are carried out, and compared with a three‐year control integration. In each case, the model's response varies with season and location. In the first experiment the effect of increasing atmospheric carbon dioxide concentrations with prescribed present day sea surface temperatures is examined. The model's troposphere becomes warmer, thereby increasing the low level static stability over the ocean and reducing evaporation and precipitation. The warming is larger over land than over the oceans. In summer, this results in an increase in precipitation along the eastern coasts of continents. In the second experiment, the sea surface temperatures are increased by 2 K and the carbon dioxide concentration is doubled. The land surface temperature rises by 3 K. Evaporation increases markedly over the oceans. Precipitation increases in the main regions of atmospheric convergence and decreases in some regions of the subtropics. The magnitude of the model's response is shown to be reasonably consistent with that found in other three‐dimensional climate models. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Quarterly Journal of the Royal Meteorological Society Wiley

The seasonal response of a general circulation model to changes in CO 2 and sea temperatures

Loading next page...
 
/lp/wiley/the-seasonal-response-of-a-general-circulation-model-to-changes-in-co-wXxiHe3AFm
Publisher
Wiley
Copyright
Copyright © 1983 Royal Meteorological Society
ISSN
0035-9009
eISSN
1477-870X
DOI
10.1002/qj.49710945906
Publisher site
See Article on Publisher Site

Abstract

The seasonal response of an atmospheric general circulation model to changes in atmospheric carbon dioxide concentrations and sea surface temperatures is discussed. The model has five layers and a quasi‐uniform 330km horizontal grid. Sea surface temperatures, sea ice extents, and zonally mean cloud amounts are prescribed from climatology, so that feedbacks between these variables and the rest of the model are ignored. Soil moisture, snow depth and boundary layer height are modelled explicitly, and both diurnal and seasonal variations of solar zenith angle are included. Two experiments are carried out, and compared with a three‐year control integration. In each case, the model's response varies with season and location. In the first experiment the effect of increasing atmospheric carbon dioxide concentrations with prescribed present day sea surface temperatures is examined. The model's troposphere becomes warmer, thereby increasing the low level static stability over the ocean and reducing evaporation and precipitation. The warming is larger over land than over the oceans. In summer, this results in an increase in precipitation along the eastern coasts of continents. In the second experiment, the sea surface temperatures are increased by 2 K and the carbon dioxide concentration is doubled. The land surface temperature rises by 3 K. Evaporation increases markedly over the oceans. Precipitation increases in the main regions of atmospheric convergence and decreases in some regions of the subtropics. The magnitude of the model's response is shown to be reasonably consistent with that found in other three‐dimensional climate models.

Journal

The Quarterly Journal of the Royal Meteorological SocietyWiley

Published: Jan 1, 1983

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off