The Role of Particle Size, Ballast, Temperature, and Oxygen in the Sinking Flux to the Deep Sea

The Role of Particle Size, Ballast, Temperature, and Oxygen in the Sinking Flux to the Deep Sea The “transfer efficiency” of organic particles from the surface to depth is a critical determinant of ocean carbon sequestration. Recently, direct observations and geochemical analyses have revealed a systematic geographical pattern of transfer efficiency, which is highest in high latitude regions and lowest in the subtropical gyres. We evaluate the possible causes of this pattern using a mechanistic model of sinking particle dynamics. The model represents the size distribution of particles, the effects of mineral ballast, seawater temperature (which influences both particle settling velocity and microbial metabolic rates), and O2. Parameters are optimized within reasonable ranges to best match the observational constraints. Our model shows that no single factor can explain the observed pattern of transfer efficiency, but the biological effect of temperature on remineralization rate and particle size effects together can reproduce most of the regional variability with both factors contributing to low transfer efficiency in the subtropical gyres and high transfer efficiency in high latitudes. Particle density from mineral ballast has a similar directional effect to temperature and size but plays a substantially smaller role in our optimum solution, due to the opposing patterns of silicate and calcium carbonate ballasting. Oxygen effects modestly improved model fit by depressing remineralization rates and thus increasing transfer efficiency in the Eastern Tropical Pacific. Our model implies that climate‐driven changes to upper ocean temperature and associated changes in surface plankton size distribution would reduce the carbon sequestration efficiency in a warmer ocean. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Global Biogeochemical Cycles Wiley

The Role of Particle Size, Ballast, Temperature, and Oxygen in the Sinking Flux to the Deep Sea

Loading next page...
 
/lp/wiley/the-role-of-particle-size-ballast-temperature-and-oxygen-in-the-Jly9nIsAQx
Publisher
Wiley
Copyright
©2018. American Geophysical Union. All Rights Reserved.
ISSN
0886-6236
eISSN
1944-9224
D.O.I.
10.1029/2017GB005710
Publisher site
See Article on Publisher Site

Abstract

The “transfer efficiency” of organic particles from the surface to depth is a critical determinant of ocean carbon sequestration. Recently, direct observations and geochemical analyses have revealed a systematic geographical pattern of transfer efficiency, which is highest in high latitude regions and lowest in the subtropical gyres. We evaluate the possible causes of this pattern using a mechanistic model of sinking particle dynamics. The model represents the size distribution of particles, the effects of mineral ballast, seawater temperature (which influences both particle settling velocity and microbial metabolic rates), and O2. Parameters are optimized within reasonable ranges to best match the observational constraints. Our model shows that no single factor can explain the observed pattern of transfer efficiency, but the biological effect of temperature on remineralization rate and particle size effects together can reproduce most of the regional variability with both factors contributing to low transfer efficiency in the subtropical gyres and high transfer efficiency in high latitudes. Particle density from mineral ballast has a similar directional effect to temperature and size but plays a substantially smaller role in our optimum solution, due to the opposing patterns of silicate and calcium carbonate ballasting. Oxygen effects modestly improved model fit by depressing remineralization rates and thus increasing transfer efficiency in the Eastern Tropical Pacific. Our model implies that climate‐driven changes to upper ocean temperature and associated changes in surface plankton size distribution would reduce the carbon sequestration efficiency in a warmer ocean.

Journal

Global Biogeochemical CyclesWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off