The role of Arabidopsis thaliana RASD1 gene in ABA‐dependent abiotic stress response

The role of Arabidopsis thaliana RASD1 gene in ABA‐dependent abiotic stress response Abiotic stress is one of the key parameters affecting plant productivity. Drought and soil salinity, in particular, challenge plants to activate various response mechanisms to withstand these adverse growth conditions. While the molecular events that take place are complex and to a large extent unclear, the plant hormone abscisic acid (ABA) is considered a major player in mediating the adaptation of plants to stress. Here we report the identification of an ABA‐insensitive mutant from Arabidopsis thaliana. A combination of molecular, genetic and physiology approaches were implemented, to characterise the AtRASD1 locus (RESPONSIVENESS TO ABA SALT AND DROUGHT 1) and to investigate its role in plant development. RASD1 is expressed predominantly in the vascular system of A. thaliana and encodes a peptide of unknown function with no similarity to any known sequence to date. The protein is localised in the nucleus and the cytoplasm, and RASD1‐impaired plants are drought‐intolerant and insensitive to exogenous ABA and NaCl during germination and root growth. Our data indicate that RASD1 is involved in ABA‐dependent signal transduction pathways and therefore in enabling plants to activate response mechanisms related to seed germination and abiotic stress. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Biology Wiley

The role of Arabidopsis thaliana RASD1 gene in ABA‐dependent abiotic stress response

Loading next page...
 
/lp/wiley/the-role-of-arabidopsis-thaliana-rasd1-gene-in-aba-dependent-abiotic-41V0Hr9yqq
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 German Botanical Society and Royal Botanical Society of the Netherlands
ISSN
1435-8603
eISSN
1438-8677
D.O.I.
10.1111/plb.12662
Publisher site
See Article on Publisher Site

Abstract

Abiotic stress is one of the key parameters affecting plant productivity. Drought and soil salinity, in particular, challenge plants to activate various response mechanisms to withstand these adverse growth conditions. While the molecular events that take place are complex and to a large extent unclear, the plant hormone abscisic acid (ABA) is considered a major player in mediating the adaptation of plants to stress. Here we report the identification of an ABA‐insensitive mutant from Arabidopsis thaliana. A combination of molecular, genetic and physiology approaches were implemented, to characterise the AtRASD1 locus (RESPONSIVENESS TO ABA SALT AND DROUGHT 1) and to investigate its role in plant development. RASD1 is expressed predominantly in the vascular system of A. thaliana and encodes a peptide of unknown function with no similarity to any known sequence to date. The protein is localised in the nucleus and the cytoplasm, and RASD1‐impaired plants are drought‐intolerant and insensitive to exogenous ABA and NaCl during germination and root growth. Our data indicate that RASD1 is involved in ABA‐dependent signal transduction pathways and therefore in enabling plants to activate response mechanisms related to seed germination and abiotic stress.

Journal

Plant BiologyWiley

Published: Jan 1, 2018

Keywords: ; ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off