The Reliability of Using Population Viability Analysis for Risk Classification of Species

The Reliability of Using Population Viability Analysis for Risk Classification of Species I examine whether or not it is appropriate to use extinction probabilities generated by population viability analyses, based on best estimates for model parameters, as criteria for listing species in Red Data Book categories as recently proposed by the World Conservation Union. Such extinction probabilities are influenced by how accurately model parameters are estimated and by how accurately the models depict actual population dynamics. I evaluate the effect of uncertainty in parameter estimation through simulations. Simulations based on Steller sea lions were used to evaluate bias and precision in estimates of probability of extinction and to consider the performance of two proposed classification schemes. Extinction time estimates were biased (because of violation of the assumption of stable age distribution) and underestimated the variability of probability of extinction for a given time (primarily because of uncertainty in parameter estimation). Bias and precision in extinction probabilities are important when these probabilities are used to compare the risk of extinction between species. Suggestions are given for population viability analysis techniques that incorporate parameter uncertainty. I conclude that testing classification schemes with simulations using quantitative performance objectives should precede adoption of quantitative listing criteria. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Conservation Biology Wiley

The Reliability of Using Population Viability Analysis for Risk Classification of Species

Conservation Biology, Volume 9 (3) – Jun 1, 1995

Loading next page...
 
/lp/wiley/the-reliability-of-using-population-viability-analysis-for-risk-b6GdbwM7TA
Publisher
Wiley
Copyright
Copyright © 1995 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0888-8892
eISSN
1523-1739
D.O.I.
10.1046/j.1523-1739.1995.09030551.x
Publisher site
See Article on Publisher Site

Abstract

I examine whether or not it is appropriate to use extinction probabilities generated by population viability analyses, based on best estimates for model parameters, as criteria for listing species in Red Data Book categories as recently proposed by the World Conservation Union. Such extinction probabilities are influenced by how accurately model parameters are estimated and by how accurately the models depict actual population dynamics. I evaluate the effect of uncertainty in parameter estimation through simulations. Simulations based on Steller sea lions were used to evaluate bias and precision in estimates of probability of extinction and to consider the performance of two proposed classification schemes. Extinction time estimates were biased (because of violation of the assumption of stable age distribution) and underestimated the variability of probability of extinction for a given time (primarily because of uncertainty in parameter estimation). Bias and precision in extinction probabilities are important when these probabilities are used to compare the risk of extinction between species. Suggestions are given for population viability analysis techniques that incorporate parameter uncertainty. I conclude that testing classification schemes with simulations using quantitative performance objectives should precede adoption of quantitative listing criteria.

Journal

Conservation BiologyWiley

Published: Jun 1, 1995

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off