The relationship of catchment topography and soil hydraulic characteristics to lake alkalinity in the northeastern United States

The relationship of catchment topography and soil hydraulic characteristics to lake alkalinity in... We undertook the task of determining whether base flow alkalinity of surface waters in the northeastern United States is related to indices of soil contact time and flow path partitioning that are derived from topographic and soils information. The influence of topography and soils on catchment hydrology has been incorporated previously in the variable source area model TOPMODEL as the relative frequency distribution of ln (a/Kb tan B), where ln is the Naperian logarithm, “a” is the area drained per unit contour, K is the saturated hydraulic conductivity, b is the soil depth, and tan B is the slope. Using digital elevation and soil survey data, we calculated the ln (a/Kb tan B) distribution for 145 catchments. Indices of flow path partitioning and soil contact time were derived from the ln (a/Kb tan B) distributions and compared to measurements of alkalinity in lakes to which the catchments drain. We found that alkalinity was, in general, positively correlated with the index of soil contact time, whereas the correlation between alkalinity and the flow path partitioning index was weak at best. A portion of the correlation between the soil contact time index and alkalinity was attributable to covariation with soil base saturation and cation exchange capacity, while another portion was found to be independent of these factors. Although our results indicate that catchments with long soil contact time indices are most likely to produce high alkalinity base flow, a sensitivity analysis of TOPMODEL suggests that surface waters of these same watersheds may be susceptible to alkalinity depressions during storm events, due to the role of flow paths. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Water Resources Research Wiley

The relationship of catchment topography and soil hydraulic characteristics to lake alkalinity in the northeastern United States

Loading next page...
 
/lp/wiley/the-relationship-of-catchment-topography-and-soil-hydraulic-WfHy6BZM51
Publisher site
See Article on Publisher Site

Abstract

We undertook the task of determining whether base flow alkalinity of surface waters in the northeastern United States is related to indices of soil contact time and flow path partitioning that are derived from topographic and soils information. The influence of topography and soils on catchment hydrology has been incorporated previously in the variable source area model TOPMODEL as the relative frequency distribution of ln (a/Kb tan B), where ln is the Naperian logarithm, “a” is the area drained per unit contour, K is the saturated hydraulic conductivity, b is the soil depth, and tan B is the slope. Using digital elevation and soil survey data, we calculated the ln (a/Kb tan B) distribution for 145 catchments. Indices of flow path partitioning and soil contact time were derived from the ln (a/Kb tan B) distributions and compared to measurements of alkalinity in lakes to which the catchments drain. We found that alkalinity was, in general, positively correlated with the index of soil contact time, whereas the correlation between alkalinity and the flow path partitioning index was weak at best. A portion of the correlation between the soil contact time index and alkalinity was attributable to covariation with soil base saturation and cation exchange capacity, while another portion was found to be independent of these factors. Although our results indicate that catchments with long soil contact time indices are most likely to produce high alkalinity base flow, a sensitivity analysis of TOPMODEL suggests that surface waters of these same watersheds may be susceptible to alkalinity depressions during storm events, due to the role of flow paths.

Journal

Water Resources ResearchWiley

Published: May 1, 1989

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off