The Relationship Between Endogenous β‐Glucuronidase Activity and Biologically Active Flavones‐Aglycone Contents in Hairy Roots of Baikal Skullcap

The Relationship Between Endogenous β‐Glucuronidase Activity and Biologically Active... Here, we examine the relationship between contents of principal flavones in hairy roots of Scutellaria baicalensis with the activity of the β‐glucuronidase (sGUS) enzyme during a culturing cycle. Using RP‐HPLC, we show that the highest contents of aglycones, baicalin and wogonin is observed at the growth days 8, 14, and 71 and reach 45, 41, and 62% (based on the total weight of hairy roots of the Baikal skullcap), correspondingly. Their accumulation is accompanied by increase of the sGUS activity, which we determined fluorometrically. Moreover, the enzyme activity is characterized by significant and reasonable correlation only with the wogonin contents. Our results confirm a significant role of sGUS at the final steps of the metabolism in root‐specific flavones of Baikal skullcap and suggest how one can optimize the conditions of culturing the hairy roots for biotechnological production of individual flavonoids. For example, at the culturing day 71 wogonin constituted over 80% of all flavones extracted from cells. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Chemistry & Biodiversity Wiley

The Relationship Between Endogenous β‐Glucuronidase Activity and Biologically Active Flavones‐Aglycone Contents in Hairy Roots of Baikal Skullcap

Loading next page...
 
/lp/wiley/the-relationship-between-endogenous-glucuronidase-activity-and-aCi2AR1OMc
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 Wiley‐VHCA AG, Zurich, Switzerland
ISSN
1612-1872
eISSN
1612-1880
D.O.I.
10.1002/cbdv.201700409
Publisher site
See Article on Publisher Site

Abstract

Here, we examine the relationship between contents of principal flavones in hairy roots of Scutellaria baicalensis with the activity of the β‐glucuronidase (sGUS) enzyme during a culturing cycle. Using RP‐HPLC, we show that the highest contents of aglycones, baicalin and wogonin is observed at the growth days 8, 14, and 71 and reach 45, 41, and 62% (based on the total weight of hairy roots of the Baikal skullcap), correspondingly. Their accumulation is accompanied by increase of the sGUS activity, which we determined fluorometrically. Moreover, the enzyme activity is characterized by significant and reasonable correlation only with the wogonin contents. Our results confirm a significant role of sGUS at the final steps of the metabolism in root‐specific flavones of Baikal skullcap and suggest how one can optimize the conditions of culturing the hairy roots for biotechnological production of individual flavonoids. For example, at the culturing day 71 wogonin constituted over 80% of all flavones extracted from cells.

Journal

Chemistry & BiodiversityWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off