The relation between mainstream length and area in drainage basins

The relation between mainstream length and area in drainage basins Hack and Gray have both found that data on mainstream lengths and basin areas can be represented by the equation L′ = CAn′, where C is about 1.4 (measurements in miles), and n′ is about 0.6. Hack has suggested that the deviation of n′ from ½ can be explained by an elongation of drainage basin shapes with increasing area. We point out that variations of stream sinuosity with area can also affect the value of n′. A simple approximate formula is deduced that relates mainstream length, sinuosity, basin shape, and area, and shows how the contributions of sinuosity and shape variation to the quantity (n′ − ½) may be separated and evaluated. Data that illustrate these points are presented for both real and simulated stream systems. Our conclusions are: (1) Variation in mainstream sinuosity with area can be responsible for a significant part of the deviation of n′ from ½. (2) The generally accepted statement that drainage basins become more elongated as their area increases needs further investigation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Water Resources Research Wiley

The relation between mainstream length and area in drainage basins

Water Resources Research, Volume 3 (4) – Dec 1, 1967

Loading next page...
 
/lp/wiley/the-relation-between-mainstream-length-and-area-in-drainage-basins-UoN2v9PzwZ
Publisher
Wiley
Copyright
Copyright © 1967 by the American Geophysical Union.
ISSN
0043-1397
eISSN
1944-7973
D.O.I.
10.1029/WR003i004p00963
Publisher site
See Article on Publisher Site

Abstract

Hack and Gray have both found that data on mainstream lengths and basin areas can be represented by the equation L′ = CAn′, where C is about 1.4 (measurements in miles), and n′ is about 0.6. Hack has suggested that the deviation of n′ from ½ can be explained by an elongation of drainage basin shapes with increasing area. We point out that variations of stream sinuosity with area can also affect the value of n′. A simple approximate formula is deduced that relates mainstream length, sinuosity, basin shape, and area, and shows how the contributions of sinuosity and shape variation to the quantity (n′ − ½) may be separated and evaluated. Data that illustrate these points are presented for both real and simulated stream systems. Our conclusions are: (1) Variation in mainstream sinuosity with area can be responsible for a significant part of the deviation of n′ from ½. (2) The generally accepted statement that drainage basins become more elongated as their area increases needs further investigation.

Journal

Water Resources ResearchWiley

Published: Dec 1, 1967

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off