The regulation of glycolysis and electron transport in roots

The regulation of glycolysis and electron transport in roots The respiration of roots and isolated root mitochondria was investigated in Phaseolus vulgaris L., Spinacea oleracea L.; Triticum aestivum L., and Zea mays L. Although the respiration of both intact roots and isolated mitochondria displayed resistance to cyanide and sensitivity to SHAM, the percentage resistance and inhibition in roots was not the same as that in the mitochondria, with the exception of wheat. Adding FCCP to roots stimulated oxygen uptake and equalized the effects of SHAM and cyanide on roots and mitochondria. In spinach and maize roots, FCCP stimulated both the cytochrome and alternative pathways, while in bean roots, only the alternative pathway was stimulated. FCCP had little effect on wheat root respiration rates. Potential in vivo rates of oxygen uptake were estimated by expressing rates obtained with isolated mitochondria on a fumarase activity basis, and fumarase activity on a root weight basis. In wheat roots the potential rate was approximately equal to the measured in vivo rate; in the other species the potential rates were substantially greater than measured rates, but approximately equal to uncoupled in vivo rates. Key glycolytic intermediates in roots were measured, and it was found that the phosphofructokinase and pyruvate kinase reactions were displaced far from equilibrium, the degree of displacement being approximately equal in roots with little, and roots with substantial, alternative path engagement. Thus, although glycolysis is controlled, the regulation of this pathway appears to be quite flexible. The results are discussed in terms of possible regulatory mechanisms. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physiologia Plantarum Wiley

The regulation of glycolysis and electron transport in roots

Loading next page...
 
/lp/wiley/the-regulation-of-glycolysis-and-electron-transport-in-roots-0f8sI70u21
Publisher
Wiley
Copyright
Copyright © 1983 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0031-9317
eISSN
1399-3054
D.O.I.
10.1111/j.1399-3054.1983.tb04160.x
Publisher site
See Article on Publisher Site

Abstract

The respiration of roots and isolated root mitochondria was investigated in Phaseolus vulgaris L., Spinacea oleracea L.; Triticum aestivum L., and Zea mays L. Although the respiration of both intact roots and isolated mitochondria displayed resistance to cyanide and sensitivity to SHAM, the percentage resistance and inhibition in roots was not the same as that in the mitochondria, with the exception of wheat. Adding FCCP to roots stimulated oxygen uptake and equalized the effects of SHAM and cyanide on roots and mitochondria. In spinach and maize roots, FCCP stimulated both the cytochrome and alternative pathways, while in bean roots, only the alternative pathway was stimulated. FCCP had little effect on wheat root respiration rates. Potential in vivo rates of oxygen uptake were estimated by expressing rates obtained with isolated mitochondria on a fumarase activity basis, and fumarase activity on a root weight basis. In wheat roots the potential rate was approximately equal to the measured in vivo rate; in the other species the potential rates were substantially greater than measured rates, but approximately equal to uncoupled in vivo rates. Key glycolytic intermediates in roots were measured, and it was found that the phosphofructokinase and pyruvate kinase reactions were displaced far from equilibrium, the degree of displacement being approximately equal in roots with little, and roots with substantial, alternative path engagement. Thus, although glycolysis is controlled, the regulation of this pathway appears to be quite flexible. The results are discussed in terms of possible regulatory mechanisms.

Journal

Physiologia PlantarumWiley

Published: Jun 1, 1983

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off