Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

The plasma membrane aquaporin NtAQP1 is a key component of the leaf unfolding mechanism in tobacco

The plasma membrane aquaporin NtAQP1 is a key component of the leaf unfolding mechanism in tobacco Epinastic leaf movement of tobacco is based on differential growth of the upper and lower leaf surface and is distinct from the motor organ‐driven mechanism of nyctinastic leaf movement of, for example, mimosa species. The epinastic leaf movement of tobacco is observed not only under diurnal light regimes but also in continuous light, indicating a control by light and the circadian clock. As the transport of water across membranes by aquaporins is an important component of rapid plant cell elongation, the role of the tobacco aquaporin Nt aquaporin (AQP)1 in the epinastic response was studied in detail. In planta NtAQP1‐luciferase (LUC) activity studies, Northern and Western blot analyses demonstrated a diurnal and circadian oscillation in the expression of this plasma membrane intrinsic protein (PIP)1‐type aquaporin in leaf petioles, exhibiting peaks of expression coinciding with leaf unfolding. Cellular water permeability of protoplasts isolated from leaf petioles was found to be high in the morning, i.e. during the unfolding reaction, and low in the evening. Moreover, diurnal epinastic leaf movement was shown to be reduced in transgenic tobacco lines with an impaired expression of NtAQP1. It is concluded that the cyclic expression of PIP1‐aquaporin represents an important component of the leaf movement mechanism. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Plant Journal Wiley

The plasma membrane aquaporin NtAQP1 is a key component of the leaf unfolding mechanism in tobacco

Loading next page...
 
/lp/wiley/the-plasma-membrane-aquaporin-ntaqp1-is-a-key-component-of-the-leaf-0eBrwyPt0m

References (52)

Publisher
Wiley
Copyright
Copyright © 2004 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0960-7412
eISSN
1365-313X
DOI
10.1046/j.1365-313X.2003.01947.x
Publisher site
See Article on Publisher Site

Abstract

Epinastic leaf movement of tobacco is based on differential growth of the upper and lower leaf surface and is distinct from the motor organ‐driven mechanism of nyctinastic leaf movement of, for example, mimosa species. The epinastic leaf movement of tobacco is observed not only under diurnal light regimes but also in continuous light, indicating a control by light and the circadian clock. As the transport of water across membranes by aquaporins is an important component of rapid plant cell elongation, the role of the tobacco aquaporin Nt aquaporin (AQP)1 in the epinastic response was studied in detail. In planta NtAQP1‐luciferase (LUC) activity studies, Northern and Western blot analyses demonstrated a diurnal and circadian oscillation in the expression of this plasma membrane intrinsic protein (PIP)1‐type aquaporin in leaf petioles, exhibiting peaks of expression coinciding with leaf unfolding. Cellular water permeability of protoplasts isolated from leaf petioles was found to be high in the morning, i.e. during the unfolding reaction, and low in the evening. Moreover, diurnal epinastic leaf movement was shown to be reduced in transgenic tobacco lines with an impaired expression of NtAQP1. It is concluded that the cyclic expression of PIP1‐aquaporin represents an important component of the leaf movement mechanism.

Journal

The Plant JournalWiley

Published: Jan 1, 2004

Keywords: ; ; ;

There are no references for this article.