The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina.

The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells... 1. Heterochromatic flicker photometry is a way of measuring the spectral sensitivity of the human eye. Two lights of different colour are sinusoidally alternated at, typically, 10‐20 Hz, and their relative intensities adjusted by the observer until the sensation of flicker is minimized. This technique has been used to define the human photopic luminosity, or V lambda, function on which photometry is based. 2. We have studied the responses of macaque retinal ganglion cells using this stimulus paradigm. The responses of the phasic ganglion cells go through a minimum at relative radiances very similar to that predicted from the V lambda function. At this point, defined as equal luminance, an abrupt change in response phase was observed. A small residual response at twice the flicker frequency was apparent under some conditions. 3. The spectral sensitivity of parafoveal phasic cells measured in this way corresponded very closely to that of human observers minimizing flicker on the same apparatus. 4. Minima in phasic cell activity were independent of flicker frequency, as is the case in the psychophysical task. 5. The response minima of phasic cells obey the laws of additivity and transitivity which are important characteristics of heterochromatic flicker photometry. 6. As the relative intensities of the lights were altered responses of tonic, spectrally opponent cells usually underwent a gradual phase change with vigorous responses at equal luminance. The responses of tonic cells treated individually or as a population could not be related to the V lambda function in any meaningful way. 7. We conclude that the phasic, magnocellular cell system of the primate visual pathway underlies performance in the psychophysical task of heterochromatic flicker photometry. It is likely that other tasks in which spectral sensitivity conforms to the V lambda function also rely on this cell system. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Physiology Wiley

The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina.

The Journal of Physiology, Volume 404 (1) – Oct 1, 1988

Loading next page...
 
/lp/wiley/the-physiological-basis-of-heterochromatic-flicker-photometry-DuEkNu0Mko
Publisher
Wiley
Copyright
© 2014 The Physiological Society
ISSN
0022-3751
eISSN
1469-7793
D.O.I.
10.1113/jphysiol.1988.sp017292
Publisher site
See Article on Publisher Site

Abstract

1. Heterochromatic flicker photometry is a way of measuring the spectral sensitivity of the human eye. Two lights of different colour are sinusoidally alternated at, typically, 10‐20 Hz, and their relative intensities adjusted by the observer until the sensation of flicker is minimized. This technique has been used to define the human photopic luminosity, or V lambda, function on which photometry is based. 2. We have studied the responses of macaque retinal ganglion cells using this stimulus paradigm. The responses of the phasic ganglion cells go through a minimum at relative radiances very similar to that predicted from the V lambda function. At this point, defined as equal luminance, an abrupt change in response phase was observed. A small residual response at twice the flicker frequency was apparent under some conditions. 3. The spectral sensitivity of parafoveal phasic cells measured in this way corresponded very closely to that of human observers minimizing flicker on the same apparatus. 4. Minima in phasic cell activity were independent of flicker frequency, as is the case in the psychophysical task. 5. The response minima of phasic cells obey the laws of additivity and transitivity which are important characteristics of heterochromatic flicker photometry. 6. As the relative intensities of the lights were altered responses of tonic, spectrally opponent cells usually underwent a gradual phase change with vigorous responses at equal luminance. The responses of tonic cells treated individually or as a population could not be related to the V lambda function in any meaningful way. 7. We conclude that the phasic, magnocellular cell system of the primate visual pathway underlies performance in the psychophysical task of heterochromatic flicker photometry. It is likely that other tasks in which spectral sensitivity conforms to the V lambda function also rely on this cell system.

Journal

The Journal of PhysiologyWiley

Published: Oct 1, 1988

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off