The isolation of a dol‐P‐man synthase from Ustilago maydis that functions in Saccharomyces cerevisiae

The isolation of a dol‐P‐man synthase from Ustilago maydis that functions in Saccharomyces... Genomic DNAs from several fungi were screened for a homologous sequence to Saccharomyces cerevisiae DPM1, an essential gene which encodes dolichyl phosphoryl mannose synthase. The fungi examined included Aspergillus nidulans, Neurospora crassa, Schizophyllum commune and Ustilago maydis. Only U. maydis gave a significant signal after Southern hybridization using DPM1 as a probe. The Ustilago homolog was subsequently cloned and sequenced. The predicted protein of 294 amino acids has 60% identity to the S. cerevisiae protein, but lacks the putative ‘dolichol recognition sequence’. RNA of ca. 900 bp is transcribed in both yeast and filamentous cells of Ustilago. In Escherichia coli, the U. maydis sequence expressed a 35 kDa protein exhibiting dolichyl phosphoryl mannose synthase activity. The sequence was also shown to complement a haploid strain of S. cerevisiae containing a deletion of the DPM1 gene. The U. maydis sequence therefore, encodes a dolichyl phosphoryl mannose synthase that can support normal vegetative growth in S. cerevisiae. The GenBank accession number is U54797. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Yeast Wiley

The isolation of a dol‐P‐man synthase from Ustilago maydis that functions in Saccharomyces cerevisiae

Loading next page...
 
/lp/wiley/the-isolation-of-a-dol-p-man-synthase-from-ustilago-maydis-that-0h7wWWuFJq
Publisher
Wiley
Copyright
Copyright © 1996 John Wiley & Sons Ltd.
ISSN
0749-503X
eISSN
1097-0061
DOI
10.1002/(SICI)1097-0061(19960630)12:8<765::AID-YEA974>3.0.CO;2-A
Publisher site
See Article on Publisher Site

Abstract

Genomic DNAs from several fungi were screened for a homologous sequence to Saccharomyces cerevisiae DPM1, an essential gene which encodes dolichyl phosphoryl mannose synthase. The fungi examined included Aspergillus nidulans, Neurospora crassa, Schizophyllum commune and Ustilago maydis. Only U. maydis gave a significant signal after Southern hybridization using DPM1 as a probe. The Ustilago homolog was subsequently cloned and sequenced. The predicted protein of 294 amino acids has 60% identity to the S. cerevisiae protein, but lacks the putative ‘dolichol recognition sequence’. RNA of ca. 900 bp is transcribed in both yeast and filamentous cells of Ustilago. In Escherichia coli, the U. maydis sequence expressed a 35 kDa protein exhibiting dolichyl phosphoryl mannose synthase activity. The sequence was also shown to complement a haploid strain of S. cerevisiae containing a deletion of the DPM1 gene. The U. maydis sequence therefore, encodes a dolichyl phosphoryl mannose synthase that can support normal vegetative growth in S. cerevisiae. The GenBank accession number is U54797.

Journal

YeastWiley

Published: Jun 30, 1996

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off