Access the full text.
Sign up today, get DeepDyve free for 14 days.
The degree of polymerization can cause significant changes in the blend microstructure and physical mechanism of the active layer of non‐fullerene polymer solar cells, resulting in a huge difference in device performance. However, the diversity of stability issues, including photobleaching stability, storage stability, photostability, thermal stability, and mechanical stability, and more, poses a challenge for the degree of polymerization to comprehensively address the trade‐off between device efficiency and stability and reasonably evaluate the application potential of polymer materials. Herein, a series of PM6 polymers with different weight‐average molecular weights (Mw) and polydispersity index (PDI) are synthesized. The effects of the degree of PM6 polymerization on the efficiency and degradation behaviors of the photovoltaic systems based on Y6 as acceptor are investigated systematically. The findings regarding stability issues, together with the trade‐offs in the efficiency‐stability gap, formulate a complete guideline for the material design and performance evaluation in a way that relies much less on trial‐and‐error efforts.
Advanced Energy Materials – Wiley
Published: Jan 1, 2021
Keywords: ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.