The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm

The impact of turbulence intensity and atmospheric stability on power deficits due to wind... ABSTRACT The wind turbine operational characteristics, power measurements and meteorological measurements from Horns Rev offshore wind farm have been identified, synchronized, quality screened and stored in a common database as 10 min statistical data. A number of flow cases have been identified to describe the flow inside the wind farm, and the power deficits along rows of wind turbines have been determined for different inflow directions and wind speed intervals. A method to classify the atmospheric stability based on the Bulk‐Ri number has been implemented. Long‐term stability conditions have been established, which confirms, in line with previous results, that conditions tend towards near neutral as wind speeds increase but that both stable and unstable conditions are present at wind speeds up to 15 m s −1. Moreover, there is a strong stability directional dependence with southerly winds having fewer unstable conditions, whereas northerly winds have fewer observations in the stable classes. Stable conditions also tend to be associated with lower levels of turbulence intensity, and this relationship persists as wind speeds increase. Power deficit is a function of ambient turbulence intensity. The level of power deficit is strongly dependent on the wind turbine spacing; as turbulence intensity increases, the power deficit decreases. The power deficit is determined for four different wind turbine spacing distances and for stability classified as very stable, stable and others (near neutral to very unstable). The more stable the conditions are, the larger the power deficit. Copyright © 2011 John Wiley & Sons, Ltd. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wind Energy Wiley

The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm

Wind Energy, Volume 15 (1) – Jan 1, 2012

Loading next page...
 
/lp/wiley/the-impact-of-turbulence-intensity-and-atmospheric-stability-on-power-KJJNzBAC8z
Publisher
Wiley
Copyright
Copyright © 2012 John Wiley & Sons, Ltd.
ISSN
1095-4244
eISSN
1099-1824
D.O.I.
10.1002/we.512
Publisher site
See Article on Publisher Site

Abstract

ABSTRACT The wind turbine operational characteristics, power measurements and meteorological measurements from Horns Rev offshore wind farm have been identified, synchronized, quality screened and stored in a common database as 10 min statistical data. A number of flow cases have been identified to describe the flow inside the wind farm, and the power deficits along rows of wind turbines have been determined for different inflow directions and wind speed intervals. A method to classify the atmospheric stability based on the Bulk‐Ri number has been implemented. Long‐term stability conditions have been established, which confirms, in line with previous results, that conditions tend towards near neutral as wind speeds increase but that both stable and unstable conditions are present at wind speeds up to 15 m s −1. Moreover, there is a strong stability directional dependence with southerly winds having fewer unstable conditions, whereas northerly winds have fewer observations in the stable classes. Stable conditions also tend to be associated with lower levels of turbulence intensity, and this relationship persists as wind speeds increase. Power deficit is a function of ambient turbulence intensity. The level of power deficit is strongly dependent on the wind turbine spacing; as turbulence intensity increases, the power deficit decreases. The power deficit is determined for four different wind turbine spacing distances and for stability classified as very stable, stable and others (near neutral to very unstable). The more stable the conditions are, the larger the power deficit. Copyright © 2011 John Wiley & Sons, Ltd.

Journal

Wind EnergyWiley

Published: Jan 1, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off