The Hubbert diffusion process: Estimation via simulated annealing and variable neighborhood search procedures—application to forecasting peak oil production

The Hubbert diffusion process: Estimation via simulated annealing and variable neighborhood... Accurately charting the progress of oil production is a problem of great current interest. Oil production is widely known to be cyclical: in any given system, after it reaches its peak, a decline will begin. With this in mind, Marion King Hubbert developed his peak theory in 1956 based on the bell‐shaped curve that bears his name. In the present work, we consider a stochastic model based on the theory of diffusion processes and associated with the Hubbert curve. The problem of the maximum likelihood estimation of the parameters for this process is also considered. Since a complex system of equations appears, with a solution that cannot be guaranteed by classical numerical procedures, we suggest the use of metaheuristic optimization algorithms such as simulated annealing and variable neighborhood search. Some strategies are suggested for bounding the space of solutions, and a description is provided for the application of the algorithms selected. In the case of the variable neighborhood search algorithm, a hybrid method is proposed in which it is combined with simulated annealing. In order to validate the theory developed here, we also carry out some studies based on simulated data and consider 2 real crude oil production scenarios from Norway and Kazakhstan. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Stochastic Models in Business and Industry Wiley

The Hubbert diffusion process: Estimation via simulated annealing and variable neighborhood search procedures—application to forecasting peak oil production

Loading next page...
 
/lp/wiley/the-hubbert-diffusion-process-estimation-via-simulated-annealing-and-Tqve0WDnDp
Publisher
Wiley
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
1524-1904
eISSN
1526-4025
D.O.I.
10.1002/asmb.2306
Publisher site
See Article on Publisher Site

Abstract

Accurately charting the progress of oil production is a problem of great current interest. Oil production is widely known to be cyclical: in any given system, after it reaches its peak, a decline will begin. With this in mind, Marion King Hubbert developed his peak theory in 1956 based on the bell‐shaped curve that bears his name. In the present work, we consider a stochastic model based on the theory of diffusion processes and associated with the Hubbert curve. The problem of the maximum likelihood estimation of the parameters for this process is also considered. Since a complex system of equations appears, with a solution that cannot be guaranteed by classical numerical procedures, we suggest the use of metaheuristic optimization algorithms such as simulated annealing and variable neighborhood search. Some strategies are suggested for bounding the space of solutions, and a description is provided for the application of the algorithms selected. In the case of the variable neighborhood search algorithm, a hybrid method is proposed in which it is combined with simulated annealing. In order to validate the theory developed here, we also carry out some studies based on simulated data and consider 2 real crude oil production scenarios from Norway and Kazakhstan.

Journal

Applied Stochastic Models in Business and IndustryWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off