The Holdridge life zones of the conterminous United States in relation to ecosystem mapping

The Holdridge life zones of the conterminous United States in relation to ecosystem mapping Summary Aim Our main goals were to develop a map of the life zones for the conterminous United States, based on the Holdridge Life Zone system, as a tool for ecosystem mapping, and to compare the map of Holdridge life zones with other global vegetation classification and mapping efforts. Location The area of interest is the forty‐eight contiguous states of the United States. Methods We wrote a PERL program for determining life zones from climatic data and linked it to the image processing workbench (IPW). The inputs were annual precipitation (Pann), biotemperature (Tbio), sea‐level biotemperature (T0bio), and the frost line. The spatial resolution chosen for this study (2.5 arc‐minute for classification, 4‐km for mapping) was driven by the availability of current state‐of‐the‐art, accurate and reliable precipitation data. We used the Precipitation‐elevation Regressions on Independent Slopes Model, or PRISM, output for the contiguous United States downloaded from the Internet. The accepted standard data for air temperature surfaces were obtained from the Vegetation/Ecosystem Modelling and Analysis Project (VEMAP). This data set along with station data obtained from the National Climatic Data Center for the US, were used to develop all temperature surfaces at the same resolution as the Pann. Results The US contains thirty‐eight life zones (34% of the world's life zones and 85% of the temperate ones) including one boreal, twelve cool temperate, twenty warm temperate, four subtropical, and one tropical. Seventy‐four percent of the US falls in the ‘basal belt’, 18% is montane, 8% is subalpine, 1% is alpine, and < 0.1% is nival. The US ranges from superarid to superhumid, and the humid province is the largest (45% of the US). The most extensive life zone is the warm temperate moist forest, which covers 23% of the country. We compared the Holdridge life zone map with output from the BIOME model, Bailey's ecoregions, Küchler potential vegetation, and land cover, all aggregated to four cover classes. Despite differences in the goals and methods for all these classification systems, there was a very good to excellent agreement among them for forests but poor for grasslands, shrublands, and nonvegetated lands. Main conclusions We consider the life zone approach to have many strengths for ecosystem mapping because it is based on climatic driving factors of ecosystem processes and recognizes ecophysiological responses of plants; it is hierarchical and allows for the use of other mapping criteria at the association and successional levels of analysis; it can be expanded or contracted without losing functional continuity among levels of ecological complexity; it is a relatively simple system based on few empirical data; and it uses objective mapping criteria. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Biogeography Wiley

The Holdridge life zones of the conterminous United States in relation to ecosystem mapping

Loading next page...
 
/lp/wiley/the-holdridge-life-zones-of-the-conterminous-united-states-in-relation-0yXvhGcd0U
Publisher
Wiley
Copyright
Copyright © 1999 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0305-0270
eISSN
1365-2699
DOI
10.1046/j.1365-2699.1999.00329.x
Publisher site
See Article on Publisher Site

Abstract

Summary Aim Our main goals were to develop a map of the life zones for the conterminous United States, based on the Holdridge Life Zone system, as a tool for ecosystem mapping, and to compare the map of Holdridge life zones with other global vegetation classification and mapping efforts. Location The area of interest is the forty‐eight contiguous states of the United States. Methods We wrote a PERL program for determining life zones from climatic data and linked it to the image processing workbench (IPW). The inputs were annual precipitation (Pann), biotemperature (Tbio), sea‐level biotemperature (T0bio), and the frost line. The spatial resolution chosen for this study (2.5 arc‐minute for classification, 4‐km for mapping) was driven by the availability of current state‐of‐the‐art, accurate and reliable precipitation data. We used the Precipitation‐elevation Regressions on Independent Slopes Model, or PRISM, output for the contiguous United States downloaded from the Internet. The accepted standard data for air temperature surfaces were obtained from the Vegetation/Ecosystem Modelling and Analysis Project (VEMAP). This data set along with station data obtained from the National Climatic Data Center for the US, were used to develop all temperature surfaces at the same resolution as the Pann. Results The US contains thirty‐eight life zones (34% of the world's life zones and 85% of the temperate ones) including one boreal, twelve cool temperate, twenty warm temperate, four subtropical, and one tropical. Seventy‐four percent of the US falls in the ‘basal belt’, 18% is montane, 8% is subalpine, 1% is alpine, and < 0.1% is nival. The US ranges from superarid to superhumid, and the humid province is the largest (45% of the US). The most extensive life zone is the warm temperate moist forest, which covers 23% of the country. We compared the Holdridge life zone map with output from the BIOME model, Bailey's ecoregions, Küchler potential vegetation, and land cover, all aggregated to four cover classes. Despite differences in the goals and methods for all these classification systems, there was a very good to excellent agreement among them for forests but poor for grasslands, shrublands, and nonvegetated lands. Main conclusions We consider the life zone approach to have many strengths for ecosystem mapping because it is based on climatic driving factors of ecosystem processes and recognizes ecophysiological responses of plants; it is hierarchical and allows for the use of other mapping criteria at the association and successional levels of analysis; it can be expanded or contracted without losing functional continuity among levels of ecological complexity; it is a relatively simple system based on few empirical data; and it uses objective mapping criteria.

Journal

Journal of BiogeographyWiley

Published: Sep 1, 1999

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off