The efficacy of basic fibroblast growth factor‐loaded poly(lactic‐co‐glycolic acid) nanosheet for mouse wound healing

The efficacy of basic fibroblast growth factor‐loaded poly(lactic‐co‐glycolic acid)... Although human recombinant basic fibroblast growth factor (bFGF) is widely used for wound healing, daily treatment with bFGF is required because of its short half‐life. An effective controlled‐release system of bFGF is, therefore, desired in clinical settings. To investigate the efficacy of a bFGF‐loaded nanosheet for wound healing, focusing on the controlled‐release of bFGF, bFGF‐loaded poly(lactic‐co‐glycolic acid) (PGLA) nanosheets were developed, and their in vitro release profile of bFGF and their in vivo efficacy for wound healing were examined. A polyion complex of positively charged human recombinant bFGF and negatively charged alginate was sandwiched between PLGA nanosheets (70 nm thick for each layer). The resulting bFGF‐loaded nanosheet robustly adhered to silicon skin by observation using a microscratch test. bFGF was gradually and continuously released over three days in an in vitro incubation study. Treatment with the bFGF‐loaded nanosheets (every 3 day for 15 days) as well as with a conventional bFGF spray effectively promoted wound healing of mouse dorsal skin defects with accelerated tissue granulation and angiogenesis, although the dose of bFGF used in the treatment with the bFGF nanosheets was approximately 1/20 of the sprayed bFGF. In conclusion, we developed a bFGF‐loaded nanosheet that sustained a continuous release of bFGF over three days and effectively promoted wound healing in mice. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wound Repair and Regeneration Wiley

The efficacy of basic fibroblast growth factor‐loaded poly(lactic‐co‐glycolic acid) nanosheet for mouse wound healing

Loading next page...
 
/lp/wiley/the-efficacy-of-basic-fibroblast-growth-factor-loaded-poly-lactic-co-iORpsjtRMJ
Publisher
Wiley
Copyright
© 2017 by the Wound Healing Society
ISSN
1067-1927
eISSN
1524-475X
D.O.I.
10.1111/wrr.12604
Publisher site
See Article on Publisher Site

Abstract

Although human recombinant basic fibroblast growth factor (bFGF) is widely used for wound healing, daily treatment with bFGF is required because of its short half‐life. An effective controlled‐release system of bFGF is, therefore, desired in clinical settings. To investigate the efficacy of a bFGF‐loaded nanosheet for wound healing, focusing on the controlled‐release of bFGF, bFGF‐loaded poly(lactic‐co‐glycolic acid) (PGLA) nanosheets were developed, and their in vitro release profile of bFGF and their in vivo efficacy for wound healing were examined. A polyion complex of positively charged human recombinant bFGF and negatively charged alginate was sandwiched between PLGA nanosheets (70 nm thick for each layer). The resulting bFGF‐loaded nanosheet robustly adhered to silicon skin by observation using a microscratch test. bFGF was gradually and continuously released over three days in an in vitro incubation study. Treatment with the bFGF‐loaded nanosheets (every 3 day for 15 days) as well as with a conventional bFGF spray effectively promoted wound healing of mouse dorsal skin defects with accelerated tissue granulation and angiogenesis, although the dose of bFGF used in the treatment with the bFGF nanosheets was approximately 1/20 of the sprayed bFGF. In conclusion, we developed a bFGF‐loaded nanosheet that sustained a continuous release of bFGF over three days and effectively promoted wound healing in mice.

Journal

Wound Repair and RegenerationWiley

Published: Jan 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off