The effect of xanthine oxidase and hypoxanthine on the permeability of red cells from patients with sickle cell anemia

The effect of xanthine oxidase and hypoxanthine on the permeability of red cells from patients... Red cells from patients with sickle cell anemia (SCA) are under greater oxidative challenge than those from normal individuals. We postulated that oxidants generated by xanthine oxidase (XO) and hypoxanthine (HO) contribute to the pathogenesis of SCA through altering solute permeability. Sickling, activities of the main red cell dehydration pathways (Psickle, Gardos channel, and KCl cotransporter [KCC]), and cell volume were measured at 100, 30, and 0 mmHg O2, together with deoxygenation‐induced nonelectrolyte hemolysis. Unexpectedly, XO/HO mixtures had mainly inhibitory effects on sickling, Psickle, and Gardos channel activities, while KCC activity and nonelectrolyte hemolysis were increased. Gardos channel activity was significantly elevated in red cells pharmacologically loaded with Ca2+ using the ionophore A23187, consistent with an effect on the transport system per se as well as via Ca2+ entry likely via the Psickle pathway. KCC activity is controlled by several pairs of conjugate protein kinases and phosphatases. Its activity, however, was also stimulated by XO/HO mixtures in red cells pretreated with N‐ethylmaleimide (NEM), which is thought to prevent regulation via changes in protein phosphorylation, suggesting that the oxidants formed could also have direct effects on this transporter. In the presence of XO/HO, red cell volume was better maintained in deoxygenated red cells. Overall, the most notable effect of XO/HO mixtures was an increase in red cell fragility. These findings increase our understanding of the effects of oxidative challenge in SCA patients and are relevant to the behavior of red cells in vivo. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physiological Reports Wiley

The effect of xanthine oxidase and hypoxanthine on the permeability of red cells from patients with sickle cell anemia

Loading next page...
 
/lp/wiley/the-effect-of-xanthine-oxidase-and-hypoxanthine-on-the-permeability-of-fSxq12zqFf
Publisher
Wiley
Copyright
© 2018 Published by the American Physiological Society and The Physiological Society
ISSN
2051-817X
eISSN
2051-817X
D.O.I.
10.14814/phy2.13626
Publisher site
See Article on Publisher Site

Abstract

Red cells from patients with sickle cell anemia (SCA) are under greater oxidative challenge than those from normal individuals. We postulated that oxidants generated by xanthine oxidase (XO) and hypoxanthine (HO) contribute to the pathogenesis of SCA through altering solute permeability. Sickling, activities of the main red cell dehydration pathways (Psickle, Gardos channel, and KCl cotransporter [KCC]), and cell volume were measured at 100, 30, and 0 mmHg O2, together with deoxygenation‐induced nonelectrolyte hemolysis. Unexpectedly, XO/HO mixtures had mainly inhibitory effects on sickling, Psickle, and Gardos channel activities, while KCC activity and nonelectrolyte hemolysis were increased. Gardos channel activity was significantly elevated in red cells pharmacologically loaded with Ca2+ using the ionophore A23187, consistent with an effect on the transport system per se as well as via Ca2+ entry likely via the Psickle pathway. KCC activity is controlled by several pairs of conjugate protein kinases and phosphatases. Its activity, however, was also stimulated by XO/HO mixtures in red cells pretreated with N‐ethylmaleimide (NEM), which is thought to prevent regulation via changes in protein phosphorylation, suggesting that the oxidants formed could also have direct effects on this transporter. In the presence of XO/HO, red cell volume was better maintained in deoxygenated red cells. Overall, the most notable effect of XO/HO mixtures was an increase in red cell fragility. These findings increase our understanding of the effects of oxidative challenge in SCA patients and are relevant to the behavior of red cells in vivo.

Journal

Physiological ReportsWiley

Published: Jan 1, 2018

Keywords: ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off