Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

The effect of mixing‐distribution misspecification in conjugate mixture models

The effect of mixing‐distribution misspecification in conjugate mixture models Parametric mixture models are commonly used in the analysis of clustered data. Parametric families are specified for the conditional distribution of the response variable given a cluster‐specific effect, and for the marginal distribution of the cluster‐specific effects. This latter distribution is referred to as the mixing distribution. If the form of the mixing distribution is misspecified, then Bayesian and maximum‐likelihood estimators of parameters associated with either distribution may be inconsistent. The magnitude of the asymptotic bias is investigated, using an approximation based on infinitesimal contamination of the mixing distribution. The approximation is useful when there is a closed‐form expression for the marginal distribution of the response under the assumed mixing distribution, but not under the true mixing distribution. Typically this occurs when the assumed mixing distribution is conjugate, meaning that the conditional distribution of the cluster‐specific parameter given the response variable belongs to the same parametric family as the mixing distribution. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Canadian Journal of Statistics/La Revue Canadienne de Statistique Wiley

The effect of mixing‐distribution misspecification in conjugate mixture models

Loading next page...
 
/lp/wiley/the-effect-of-mixing-distribution-misspecification-in-conjugate-rX0t5qaJrO

References (11)

Publisher
Wiley
Copyright
Copyright © 1996 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0319-5724
eISSN
1708-945X
DOI
10.2307/3315741
Publisher site
See Article on Publisher Site

Abstract

Parametric mixture models are commonly used in the analysis of clustered data. Parametric families are specified for the conditional distribution of the response variable given a cluster‐specific effect, and for the marginal distribution of the cluster‐specific effects. This latter distribution is referred to as the mixing distribution. If the form of the mixing distribution is misspecified, then Bayesian and maximum‐likelihood estimators of parameters associated with either distribution may be inconsistent. The magnitude of the asymptotic bias is investigated, using an approximation based on infinitesimal contamination of the mixing distribution. The approximation is useful when there is a closed‐form expression for the marginal distribution of the response under the assumed mixing distribution, but not under the true mixing distribution. Typically this occurs when the assumed mixing distribution is conjugate, meaning that the conditional distribution of the cluster‐specific parameter given the response variable belongs to the same parametric family as the mixing distribution.

Journal

The Canadian Journal of Statistics/La Revue Canadienne de StatistiqueWiley

Published: Sep 1, 1996

Keywords: ; ; ; ; ;

There are no references for this article.