THE ECOLOGY OF ARCTIC AND ALPINE PLANTS

THE ECOLOGY OF ARCTIC AND ALPINE PLANTS Summary ‘How are plants adapted to the low temperatures and other stresses of arctic and alpine environments ?’ At present it is not possible to answer this question completely. Much work remains to be done, particularly on low‐temperature metabolism, frost resistance, and the environmental cues and requirements for flowering, dormancy, regrowth, and germination. However, in brief, we can say that plants are adapted to these severe environments by employing combinations of the following general characteristics: 1. Life form: perennial herb, prostrate shrub, or lichen. Perennial herbs have greatest part of biomass underground. 2. Seed dormancy: generally controlled by environment; seeds can remain dormant for long periods of time at low temperatures since they require temperatures well above freezing for germination. 3. Seedling establishment: rare and very slow; it is often several years before a seedling is safely established. 4. Chlorophyll content: in both alpine and arctic ecosystems not greatly different on a land‐area basis from that in temperate herbaceous communities. Within a single species there is more chlorophyll in leaves of arctic populations than in those of alpine populations. 5. Photosynthesis and respiration: (a) These are at high rates for only a few weeks when temperatures and light are favourable. (b) Optimum photosynthesis rates are at lower temperatures than for ordinary plants; rates are both genetically and environmentally controlled with phenotypic plasticity very marked. (c) Dark respiration is higher at all temperatures than for ordinary plants; rate is both genetically and environmentally controlled, with phenotypic plasticity very pronounced, i.e. low‐temperature environment increases the rate at all temperatures. (d) Alpine plants have higher light‐saturation values in photosynthesis than do arctic or lowland plants; light saturation closely tied to temperature. (e) There is some evidence that alpine plants can carry on photosynthesis at lower carbon dioxide concentrations than can other plants. (f) Annual productivity is low, but daily productivity during growing season can be as high as that of most temperate herbaceous vegetation. Productivity can be increased by temperature, nutrients, or water. 6. Drought resistance: most drought stress in winter in exposed sites is due to frozen soils and dry winds. It is met by decreased water potentials, higher concentrations of soluble carbohydrates, and closed stomates. Little drought resistance in snowbank plants. Alpine plants adapted to summer drought stress can carry on photosynthesis at low water potentials; alpine or arctic plants of moist sites cannot do this. 7. Breaking of dormancy: controlled by mean temperatures near or above 0° C., and in some cases by photoperiod also. 8. Growth: very rapid even at low positive temperatures. Respiration greatly exceeds photosynthesis in early re‐growth of perennials. Internal photosynthesis may occur in hollow stems of larger plants during early growth. Nitrogen and phosphorus often limiting in cold soil. 9. Food storage: characteristic of all alpine and arctic plants except annuals. Carbohydrates mostly stored underground in herbaceous perennials. Lipids in old leaves and stems of prostrate evergreen shrubs. Depleted in early growth, and usually restored after flowering. 10. Winter survival: survival and frost resistance are excellent after hardening. Cold resistance closely tied to content of soluble carbohydrates, particularly raffinose. 11. Flowering: flower buds are pre‐formed the year before. Complete development and anthesis dependent upon temperature of the flowering year and also, in some cases, upon photoperiod. 12. Pollination: mostly insect‐pollinated in alpine regions and even in Arctic, but to a lesser extent. Wind‐pollination increasingly more important with increasing latitude. Diptera more important than bees in the Arctic and in the highest mountains. 13. Seed production: opportunistic, and dependent upon temperature during flowering period and latter half of growing season. 14. Vegetative reproduction: by rhizomes, bulbils, or layering. More common and important in Arctic than in alpine areas. 15. Onset of dormancy: triggered by photoperiod, low temperatures, and drought. Dormant plant extremely resistant to low temperatures. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biological Reviews Wiley

THE ECOLOGY OF ARCTIC AND ALPINE PLANTS

Loading next page...
 
/lp/wiley/the-ecology-of-arctic-and-alpine-plants-brRtmYkELR
Publisher site
See Article on Publisher Site

Abstract

Summary ‘How are plants adapted to the low temperatures and other stresses of arctic and alpine environments ?’ At present it is not possible to answer this question completely. Much work remains to be done, particularly on low‐temperature metabolism, frost resistance, and the environmental cues and requirements for flowering, dormancy, regrowth, and germination. However, in brief, we can say that plants are adapted to these severe environments by employing combinations of the following general characteristics: 1. Life form: perennial herb, prostrate shrub, or lichen. Perennial herbs have greatest part of biomass underground. 2. Seed dormancy: generally controlled by environment; seeds can remain dormant for long periods of time at low temperatures since they require temperatures well above freezing for germination. 3. Seedling establishment: rare and very slow; it is often several years before a seedling is safely established. 4. Chlorophyll content: in both alpine and arctic ecosystems not greatly different on a land‐area basis from that in temperate herbaceous communities. Within a single species there is more chlorophyll in leaves of arctic populations than in those of alpine populations. 5. Photosynthesis and respiration: (a) These are at high rates for only a few weeks when temperatures and light are favourable. (b) Optimum photosynthesis rates are at lower temperatures than for ordinary plants; rates are both genetically and environmentally controlled with phenotypic plasticity very marked. (c) Dark respiration is higher at all temperatures than for ordinary plants; rate is both genetically and environmentally controlled, with phenotypic plasticity very pronounced, i.e. low‐temperature environment increases the rate at all temperatures. (d) Alpine plants have higher light‐saturation values in photosynthesis than do arctic or lowland plants; light saturation closely tied to temperature. (e) There is some evidence that alpine plants can carry on photosynthesis at lower carbon dioxide concentrations than can other plants. (f) Annual productivity is low, but daily productivity during growing season can be as high as that of most temperate herbaceous vegetation. Productivity can be increased by temperature, nutrients, or water. 6. Drought resistance: most drought stress in winter in exposed sites is due to frozen soils and dry winds. It is met by decreased water potentials, higher concentrations of soluble carbohydrates, and closed stomates. Little drought resistance in snowbank plants. Alpine plants adapted to summer drought stress can carry on photosynthesis at low water potentials; alpine or arctic plants of moist sites cannot do this. 7. Breaking of dormancy: controlled by mean temperatures near or above 0° C., and in some cases by photoperiod also. 8. Growth: very rapid even at low positive temperatures. Respiration greatly exceeds photosynthesis in early re‐growth of perennials. Internal photosynthesis may occur in hollow stems of larger plants during early growth. Nitrogen and phosphorus often limiting in cold soil. 9. Food storage: characteristic of all alpine and arctic plants except annuals. Carbohydrates mostly stored underground in herbaceous perennials. Lipids in old leaves and stems of prostrate evergreen shrubs. Depleted in early growth, and usually restored after flowering. 10. Winter survival: survival and frost resistance are excellent after hardening. Cold resistance closely tied to content of soluble carbohydrates, particularly raffinose. 11. Flowering: flower buds are pre‐formed the year before. Complete development and anthesis dependent upon temperature of the flowering year and also, in some cases, upon photoperiod. 12. Pollination: mostly insect‐pollinated in alpine regions and even in Arctic, but to a lesser extent. Wind‐pollination increasingly more important with increasing latitude. Diptera more important than bees in the Arctic and in the highest mountains. 13. Seed production: opportunistic, and dependent upon temperature during flowering period and latter half of growing season. 14. Vegetative reproduction: by rhizomes, bulbils, or layering. More common and important in Arctic than in alpine areas. 15. Onset of dormancy: triggered by photoperiod, low temperatures, and drought. Dormant plant extremely resistant to low temperatures.

Journal

Biological ReviewsWiley

Published: Nov 1, 1968

References

  • Preliminary observations on anthocyanins and other flavonoid compounds and respiration rates in different ecotypes of Solidago virgaurea
    Björkman, Björkman; Holmgren, Holmgren
  • Adaptability of the photosynthetic apparatus to light intensity in ecotypes from exposed and shaded habitats
    Björkman, Björkman; Holmgren, Holmgren
  • The long day leaf as a source of cold hardiness inhibitors
    Irving, Irving; Lanphear, Lanphear
  • Temperature and plant adaptation. I. Interaction of temperature and light in the synthesis of chlorophyll in corn
    McWilliam, McWilliam; Naylor, Naylor

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off