The cytokines and micro‐environment of fracture haematoma: Current evidence

The cytokines and micro‐environment of fracture haematoma: Current evidence Fracture haematoma formation is the first and foremost important stage of fracture healing. It orchestrates the inflammatory and cellular processes leading to the formation of callus and the restoration of the continuity of the bone. Evidence suggests that blocking this initial stage could lead to an impairment of the overall bone healing process. This review aims to analyse the existing evidence of molecular contributions to bone healing within fracture haematoma and to determine the potential to modify the molecular response to fracture in the haematoma with the aim of improving union times. A comprehensive search of literature documenting fracture haematoma cytokine content was performed. Suitable papers according to prespecified criteria were identified and analysed according to Preferred Reporting Items for Systematic Reviews and Meta‐analyses guidelines. A total of 89 manuscripts formed the basis of this analysis. Low oxygen tension, high acidity, and high calcium characterised initially the fracture haematoma micro‐environment. In addition, a number of cytokines have been measured with concentrations significantly higher than those found in peripheral circulation. Growth factors have also been isolated, with an observed increase in bone morphogenetic proteins, platelet‐derived growth factor, and transforming growth factor. Although molecular modification of fracture haematoma has been attempted, more research is required to determine a suitable biological response modifier leading to therapeutic effects. The cytokine content of fracture haematoma gives insight into processes occurring in the initial stages of fracture healing. Manipulation of signalling molecules represents a promising pathway to target future therapies aiming to upregulate the osteogenesis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Tissue Engineering and Regenerative Medicine Wiley

The cytokines and micro‐environment of fracture haematoma: Current evidence

Loading next page...
 
/lp/wiley/the-cytokines-and-micro-environment-of-fracture-haematoma-current-IpqGw0GAmj
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
1932-6254
eISSN
1932-7005
D.O.I.
10.1002/term.2593
Publisher site
See Article on Publisher Site

Abstract

Fracture haematoma formation is the first and foremost important stage of fracture healing. It orchestrates the inflammatory and cellular processes leading to the formation of callus and the restoration of the continuity of the bone. Evidence suggests that blocking this initial stage could lead to an impairment of the overall bone healing process. This review aims to analyse the existing evidence of molecular contributions to bone healing within fracture haematoma and to determine the potential to modify the molecular response to fracture in the haematoma with the aim of improving union times. A comprehensive search of literature documenting fracture haematoma cytokine content was performed. Suitable papers according to prespecified criteria were identified and analysed according to Preferred Reporting Items for Systematic Reviews and Meta‐analyses guidelines. A total of 89 manuscripts formed the basis of this analysis. Low oxygen tension, high acidity, and high calcium characterised initially the fracture haematoma micro‐environment. In addition, a number of cytokines have been measured with concentrations significantly higher than those found in peripheral circulation. Growth factors have also been isolated, with an observed increase in bone morphogenetic proteins, platelet‐derived growth factor, and transforming growth factor. Although molecular modification of fracture haematoma has been attempted, more research is required to determine a suitable biological response modifier leading to therapeutic effects. The cytokine content of fracture haematoma gives insight into processes occurring in the initial stages of fracture healing. Manipulation of signalling molecules represents a promising pathway to target future therapies aiming to upregulate the osteogenesis.

Journal

Journal of Tissue Engineering and Regenerative MedicineWiley

Published: Jan 1, 2018

Keywords: ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off