Access the full text.
Sign up today, get DeepDyve free for 14 days.
Y. Kumaki, N. Matsushima, H. Yoshida, K. Nitta, K. Hikichi (2001)
Structure of the YSPTSPS repeat containing two SPXX motifs in the CTD of RNA polymerase II: NMR studies of cyclic model peptides reveal that the SPTS turn is more stable than SPSY in water.Biochimica et biophysica acta, 1548 1
D. Barillà, Barbara Lee, N. Proudfoot (2001)
Cleavage/polyadenylation factor IA associates with the carboxyl-terminal domain of RNA polymerase II in Saccharomyces cerevisiae.Proceedings of the National Academy of Sciences of the United States of America, 98 2
M. Patturajan, Xiangyun Wei, R. Berezney, J. Corden (1998)
A Nuclear Matrix Protein Interacts with the Phosphorylated C-Terminal Domain of RNA Polymerase IIMolecular and Cellular Biology, 18
L. Vasiljeva, Minkyu Kim, H. Mutschler, S. Buratowski, A. Meinhart (2008)
The Nrd1–Nab3–Sen1 termination complex interacts with the Ser5-phosphorylated RNA polymerase II C-terminal domainNature structural & molecular biology, 15
D. Zorio, D. Bentley (2004)
The link between mRNA processing and transcription: communication works both ways.Experimental cell research, 296 1
Rob Chapman, M. Heidemann, Corinna Hintermair, D. Eick (2008)
Molecular evolution of the RNA polymerase II CTD.Trends in genetics : TIG, 24 6
Jörg Fanghänel, G. Fischer (2004)
Insights into the catalytic mechanism of peptidyl prolyl cis/trans isomerases.Frontiers in bioscience : a journal and virtual library, 9
P. Shaw (2007)
Peptidyl‐prolyl cis/trans isomerases and transcription: is there a twist in the tail?EMBO reports, 8
J. Koren, U. Jinwal, Zachary Davey, Janine Kiray, K. Arulselvam, C. Dickey (2011)
Bending Tau into Shape: The Emerging Role of Peptidyl-Prolyl Isomerases in TauopathiesMolecular Neurobiology, 44
Yu-Xin Xu, J. Manley (2007)
Pin1 modulates RNA polymerase II activity during the transcription cycle.Genes & development, 21 22
A. Meinhart, T. Silberzahn, P. Cramer (2003)
The mRNA Transcription/Processing Factor Ssu72 Is a Potential Tyrosine Phosphatase*The Journal of Biological Chemistry, 278
James Joseph, Elisabeth Yeh, K. Swenson, A. Means, Winkler (2003)
The peptidyl-prolyl isomerase Pin1.Progress in cell cycle research, 5
J. Stiller, B. Mcconaughy, B. Hall (2000)
Evolutionary complementation for polymerase II CTD functionYeast, 16
Sylvain Egloff, S. Szczepaniak, Martin Dienstbier, Alice Taylor, S. Knight, Shona Murphy (2010)
The Integrator Complex Recognizes a New Double Mark on the RNA Polymerase II Carboxyl-terminal Domain*The Journal of Biological Chemistry, 285
Navjot Singh, Zhuo Ma, T. Gemmill, Xiaoyun Wu, Holland Defiglio, Anne Rossettini, Christina Rabeler, Olivia Beane, R. Morse, M. Palumbo, S. Hanes (2009)
The Ess1 prolyl isomerase is required for transcription termination of small noncoding RNAs via the Nrd1 pathway.Molecular cell, 36 2
K. Kubíček, Hana Černá, P. Holub, Josef Pasulka, Dominika Hroššová, F. Loehr, Ctirad Hofr, Š. Vaňáčová, R. Stefl (2012)
Serine phosphorylation and proline isomerization in RNAP II CTD control recruitment of Nrd1.Genes & development, 26 17
P. Cramerb, A. Srebrowa, S. Kadenera, S. Werbajha, M. Mataa, G. Melena, G. Noguësa, A. Kornblihtta (2001)
Coordination between transcription and pre-mRNA processing
Xiao Zhou, O. Kops, A. Werner, P. Lu, Minhui Shen, G. Stoller, Gerhard Küllertz, M. Stark, G. Fischer, K. Lu (2000)
Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins.Molecular cell, 6 4
S. Hausmann, H. Koiwa, S. Krishnamurthy, M. Hampsey, S. Shuman (2005)
Different Strategies for Carboxyl-terminal Domain (CTD) Recognition by Serine 5-specific CTD Phosphatases*Journal of Biological Chemistry, 280
F. Comer, G. Hart (2001)
Reciprocity between O-GlcNAc and O-phosphate on the carboxyl terminal domain of RNA polymerase II.Biochemistry, 40 26
B. Schwer, S. Shuman (2011)
Deciphering the RNA polymerase II CTD code in fission yeast.Molecular cell, 43 2
M. Gu, C. Lima (2005)
Processing the message: structural insights into capping and decapping mRNA.Current opinion in structural biology, 15 1
C. Noble, D. Hollingworth, S. Martin, Valerie Ennis-Adeniran, S. Smerdon, G. Kelly, I. Taylor, A. Ramos (2005)
Key features of the interaction between Pcf11 CID and RNA polymerase II CTDNature Structural &Molecular Biology, 12
Pengda Liu, J. Kenney, J. Stiller, A. Greenleaf (2010)
Genetic organization, length conservation, and evolution of RNA polymerase II carboxyl-terminal domain.Molecular biology and evolution, 27 11
R. Becker, B. Loll, A. Meinhart (2008)
Snapshots of the RNA Processing Factor SCAF8 Bound to Different Phosphorylated Forms of the Carboxyl-terminal Domain of RNA Polymerase II*Journal of Biological Chemistry, 283
M. Muñoz, M. Mata, A. Kornblihtt (2010)
The carboxy terminal domain of RNA polymerase II and alternative splicing.Trends in biochemical sciences, 35 9
J. Werner-Allen, Chul-Jin Lee, Pengda Liu, N. Nicely, Su Wang, A. Greenleaf, P. Zhou (2010)
cis-Proline-mediated Ser(P)5 Dephosphorylation by the RNA Polymerase II C-terminal Domain Phosphatase Ssu72*The Journal of Biological Chemistry, 286
T. Max, M. Søgaard, J. Svejstrup (2007)
Hyperphosphorylation of the C-terminal Repeat Domain of RNA Polymerase II Facilitates Dissociation of Its Complex with Mediator*Journal of Biological Chemistry, 282
Katharine Wrighton, D. Willis, Jianyin Long, Fang Liu, Xia Lin, Xin-Hua Feng (2006)
Small C-terminal Domain Phosphatases Dephosphorylate the Regulatory Linker Regions of Smad2 and Smad3 to Enhance Transforming Growth Factor-β Signaling*Journal of Biological Chemistry, 281
James Hutchins, P. Clarke (2004)
Many Fingers on the Mitotic Trigger: Post-Translational Regulation of the Cdc25C PhosphataseCell Cycle, 3
Zhenyu Xu, Wu Wei, J. Gagneur, F. Perocchi, S. Clauder-Münster, Jurgi Camblong, E. Guffanti, F. Stutz, W. Huber, L. Steinmetz (2009)
Bidirectional promoters generate pervasive transcription in yeastNature, 457
B. Lunde, S. Reichow, Minkyu Kim, Hyunsuk Suh, T. Leeper, Fan Yang, H. Mutschler, S. Buratowski, A. Meinhart, G. Varani (2010)
Cooperative interaction of transcription termination factors with the RNA polymerase II C-terminal domainNature structural & molecular biology, 17
S. Buratowski (2003)
The CTD codeNature Structural Biology, 10
K. Xiang, Takashi Nagaike, S. Xiang, T. Kilic, M. Beh, J. Manley, L. Tong (2010)
Crystal structure of the human symplekin-Ssu72-CTD phosphopeptide complexNature, 467
C. Fàbrega, Vincent Shen, S. Shuman, C. Lima (2003)
Structure of an mRNA capping enzyme bound to the phosphorylated carboxy-terminal domain of RNA polymerase II.Molecular cell, 11 6
D. Butterfield, H. Abdul, W. Opii, Shelley Newman, Gururaj Joshi, M. Ansari, R. Sultana (2006)
REVIEW: Pin1 in Alzheimer's diseaseJournal of Neurochemistry, 98
M. Moore, N. Proudfoot (2009)
Pre-mRNA Processing Reaches Back toTranscription and Ahead to TranslationCell, 136
Rob Chapman, M. Heidemann, T. Albert, R. Mailhammer, A. Flatley, M. Meisterernst, E. Kremmer, D. Eick (2007)
Transcribing RNA Polymerase II Is Phosphorylated at CTD Residue Serine-7Science, 318
H. Phatnani, A. Greenleaf (2006)
Phosphorylation and functions of the RNA polymerase II CTD.Genes & development, 20 21
Pengda Liu, A. Greenleaf, J. Stiller (2008)
The essential sequence elements required for RNAP II carboxyl-terminal domain function in yeast and their evolutionary conservation.Molecular biology and evolution, 25 4
Hui Li, Zhihong Zhang, B. Wang, Junmei Zhang, Yingming Zhao, Ying Jin (2007)
Wwp2-Mediated Ubiquitination of the RNA Polymerase II Large Subunit in Mouse Embryonic Pluripotent Stem CellsMolecular and Cellular Biology, 27
A. Meinhart, Tomislav Kamenski, Sabine Hoeppner, S. Baumli, P. Cramer (2005)
A structural perspective of CTD function.Genes & development, 19 12
M. Suh, Ping Ye, Mincheng Zhang, S. Hausmann, S. Shuman, A. Gnatt, Jianhua Fu (2005)
Fcp1 directly recognizes the C-terminal domain (CTD) and interacts with a site on RNA polymerase II distinct from the CTD.Proceedings of the National Academy of Sciences of the United States of America, 102 48
K. Lu (2004)
Pinning down cell signaling, cancer and Alzheimer's disease.Trends in biochemical sciences, 29 4
H. Gerber, M. Hagmann, K. Seipel, O. Georgiev, M. West, Y. Litingtung, W. Schaffner, J. Corden (1995)
RNA polymerase II C-terminal domain required for enhancer-driven transcriptionNature, 374
Sylvain Egloff, Martin Dienstbier, Shona Murphy (2012)
Updating the RNA polymerase CTD code: adding gene-specific layers.Trends in genetics : TIG, 28 7
M. Macias, S. Wiesner, M. Sudol (2002)
WW and SH3 domains, two different scaffolds to recognize proline‐rich ligandsFEBS Letters, 513
S. Ranuncolo, Salil Ghosh, J. Hanover, G. Hart, B. Lewis (2012)
Evidence of the Involvement of O-GlcNAc-modified Human RNA Polymerase II CTD in Transcription in Vitro and in Vivo*The Journal of Biological Chemistry, 287
Agnidipta Ghosh, S. Shuman, C. Lima (2011)
Structural insights to how mammalian capping enzyme reads the CTD code.Molecular cell, 43 2
A. Meinhart, P. Cramer (2004)
Recognition of RNA polymerase II carboxy-terminal domain by 3′-RNA-processing factorsNature, 430
K. Lu, G. Finn, T. Lee, L. Nicholson (2007)
Prolyl cis-trans isomerization as a molecular timer.Nature chemical biology, 3 10
E. Dijk, Chun-long Chen, Y. D'Aubenton-Carafa, Stéphanie Gourvennec, Marta Kwapisz, Veronique Roche, Catherine Bertrand, M. Silvain, Patricia Legoix-né, S. Loeillet, A. Nicolas, C. Thermes, Antonin Morillon, Antonin Morillon (2011)
XUTs are a class of Xrn1-sensitive antisense regulatory non-coding RNA in yeastNature, 475
J. Hsin, Amit Sheth, J. Manley (2011)
RNAP II CTD Phosphorylated on Threonine-4 Is Required for Histone mRNA 3′ End ProcessingScience, 334
G. Wulf, G. Finn, F. Suizu, K. Lu (2005)
Phosphorylation-specific prolyl isomerization: is there an underlying theme?Nature Cell Biology, 7
J. Ilsley, M. Sudol, S. Winder (2002)
The WW domain: linking cell signalling to the membrane cytoskeleton.Cellular signalling, 14 3
T. Borggrefe, Xiaojing Yue (2011)
Interactions between subunits of the Mediator complex with gene-specific transcription factors.Seminars in cell & developmental biology, 22 7
G. Lippens, I. Landrieu, C. Smet (2007)
Molecular mechanisms of the phospho‐dependent prolyl cis/trans isomerase Pin1The FEBS Journal, 274
D. Morris, H. Phatnani, A. Greenleaf (1999)
Phospho-Carboxyl-Terminal Domain Binding and the Role of a Prolyl Isomerase in Pre-mRNA 3′-End Formation*The Journal of Biological Chemistry, 274
M. Sadowski, B. Dichtl, W. Hübner, W. Keller (2003)
Independent functions of yeast Pcf11p in pre‐mRNA 3′ end processing and in transcription terminationThe EMBO Journal, 22
Joshua Tietjen, David Zhang, Juan Rodríguez-Molina, Brent White, Md. Akhtar, M. Heidemann, X. Li, Rob Chapman, K. Shokat, S. Keleş, D. Eick, A. Ansari (2010)
Chemical-genomic dissection of the CTD codeNature structural & molecular biology, 17
Y. Pei, S. Hausmann, C. Ho, B. Schwer, S. Shuman (2001)
The Length, Phosphorylation State, and Primary Structure of the RNA Polymerase II Carboxyl-terminal Domain Dictate Interactions with mRNA Capping Enzymes*The Journal of Biological Chemistry, 276
Sylvain Egloff, J. Zaborowska, C. Laitem, T. Kiss, Shona Murphy (2012)
Ser7 Phosphorylation of the CTD Recruits the RPAP2 Ser5 Phosphatase to snRNA GenesMolecular Cell, 45
Sylvain Egloff, Dawn O’Reilly, Rob Chapman, Alice Taylor, K. Tanzhaus, Laura Pitts, D. Eick, Shona Murphy (2007)
Serine-7 of the RNA Polymerase II CTD Is Specifically Required for snRNA Gene ExpressionScience, 318
Mark Verdecia, M. Bowman, K. Lu, T. Hunter, J. Noel (2000)
Structural basis for phosphoserine-proline recognition by group IV WW domainsNature Structural Biology, 7
G. Wulf, A. Ryo, Y. Liou, K. Lu (2003)
The prolyl isomerase Pin1 in breast development and cancerBreast Cancer Research, 5
P. Cagas, J. Corden (1995)
Structural studies of a synthetic peptide derived from the carboxyl‐terminal domain of RNA polymerase IIProteins: Structure, 21
S. Hausmann, H. Erdjument-Bromage, S. Shuman (2004)
Schizosaccharomyces pombe Carboxyl-terminal Domain (CTD) Phosphatase Fcp1Journal of Biological Chemistry, 279
M. Hampsey, D. Reinberg (2003)
Tails of Intrigue Phosphorylation of RNA Polymerase II Mediates Histone MethylationCell, 113
S. Krishnamurthy, Xiaoyuan He, M. Reyes-Reyes, C. Moore, M. Hampsey (2004)
Ssu72 Is an RNA polymerase II CTD phosphatase.Molecular cell, 14 3
L. Myers, R. Kornberg (2000)
Mediator of transcriptional regulation.Annual review of biochemistry, 69
Md. Akhtar, M. Heidemann, Joshua Tietjen, David Zhang, Rob Chapman, D. Eick, A. Ansari (2009)
TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II.Molecular cell, 34 3
Yingxia Wen, A. Shatkin (1999)
Transcription elongation factor hSPT5 stimulates mRNA capping.Genes & development, 13 14
M. West, J. Corden (1995)
Construction and analysis of yeast RNA polymerase II CTD deletion and substitution mutations.Genetics, 140 4
E. Bienkiewicz, A-Young Woody, Robert Woody (2000)
Conformation of the RNA polymerase II C-terminal domain: circular dichroism of long and short fragments.Journal of molecular biology, 297 1
Yan Zhang, Youngjun Kim, N. Genoud, Jianmin Gao, J. Kelly, S. Pfaff, G. Gill, J. Dixon, J. Noel (2006)
Determinants for dephosphorylation of the RNA polymerase II C‐terminal domain by Scp1The FASEB Journal, 21
Michele Yeo, P. Lin, M. Dahmus, G. Gill (2003)
A Novel RNA Polymerase II C-terminal Domain Phosphatase That Preferentially Dephosphorylates Serine 5*Journal of Biological Chemistry, 278
S. Ahn, Minkyu Kim, S. Buratowski (2004)
Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3' end processing.Molecular cell, 13 1
P. Shaw (2002)
Peptidyl‐prolyl isomerases: a new twist to transcriptionEMBO reports, 3
Corinna Hintermair, M. Heidemann, Frederic Koch, Nicolas Descostes, M. Gut, I. Gut, Romain Fenouil, P. Ferrier, A. Flatley, E. Kremmer, Rob Chapman, J. Andrau, D. Eick (2012)
Threonine‐4 of mammalian RNA polymerase II CTD is targeted by Polo‐like kinase 3 and required for transcriptional elongationThe EMBO Journal, 31
S. Buratowski (2009)
Progression through the RNA polymerase II CTD cycle.Molecular cell, 36 4
Yutaka Hirose, Y. Ohkuma (2007)
Phosphorylation of the C-terminal domain of RNA polymerase II plays central roles in the integrated events of eucaryotic gene expression.Journal of biochemistry, 141 5
M. Werner, P. Thuriaux, J. Soutourina (2009)
Structure-function analysis of RNA polymerases I and III.Current opinion in structural biology, 19 6
Agnidipta Ghosh, S. Shuman, C. Lima (2008)
The structure of Fcp1, an essential RNA polymerase II CTD phosphatase.Molecular cell, 32 4
S. Shuman (2001)
Structure, mechanism, and evolution of the mRNA capping apparatus.Progress in nucleic acid research and molecular biology, 66
Minkyu Kim, Hyunsuk Suh, E. Cho, S. Buratowski (2009)
Phosphorylation of the Yeast Rpb1 C-terminal Domain at Serines 2, 5, and 7*The Journal of Biological Chemistry, 284
William Kelly, M. Dahmus, G. Hart (1993)
RNA polymerase II is a glycoprotein. Modification of the COOH-terminal domain by O-GlcNAc.The Journal of biological chemistry, 268 14
David Zhang, Juan Rodríguez-Molina, Joshua Tietjen, Corey Nemec, A. Ansari (2012)
Emerging Views on the CTD CodeGenetics Research International, 2012
B. Dichtl, Diana Blank, M. Ohnacker, A. Friedlein, D. Roeder, H. Langen, W. Keller (2002)
A role for SSU72 in balancing RNA polymerase II transcription elongation and termination.Molecular cell, 10 5
Minkyu Kim, N. Krogan, L. Vasiljeva, O. Rando, Eduard Nedea, J. Greenblatt, S. Buratowski (2004)
The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase IINature, 432
E. Rosonina, S. Kaneko, J. Manley (2006)
Terminating the transcript: breaking up is hard to do.Genes & development, 20 9
Sylvain Egloff, Shona Murphy (2008)
Role of the C-terminal domain of RNA polymerase II in expression of small nuclear RNA genes.Biochemical Society transactions, 36 Pt 3
Alain Bataille, C. Jeronimo, P. Jacques, L. Laramée, Marie-Ève Fortin, A. Forest, Maxime Bergeron, S. Hanes, F. Robert (2012)
A universal RNA polymerase II CTD cycle is orchestrated by complex interplays between kinase, phosphatase, and isomerase enzymes along genes.Molecular cell, 45 2
V. Brès, S. Yoh, K. Jones (2008)
The multi-tasking P-TEFb complex.Current opinion in cell biology, 20 3
E. Steinmetz, D. Brow (2003)
Ssu72 Protein Mediates Both Poly(A)-Coupled and Poly(A)-Independent Termination of RNA Polymerase II TranscriptionMolecular and Cellular Biology, 23
E. Steinmetz, D. Brow (1998)
Control of pre-mRNA accumulation by the essential yeast protein Nrd1 requires high-affinity transcript binding and a domain implicated in RNA polymerase II association.Proceedings of the National Academy of Sciences of the United States of America, 95 12
H. Neil, C. Malabat, Y. D'Aubenton-Carafa, Zhenyu Xu, L. Steinmetz, A. Jacquier (2009)
Widespread bidirectional promoters are the major source of cryptic transcripts in yeastNature, 457
N. Proudfoot, A. Furger, M. Dye (2002)
Integrating mRNA Processing with TranscriptionCell, 108
R. Baskaran, M. Dahmus, J. Wang (1993)
Tyrosine phosphorylation of mammalian RNA polymerase II carboxyl-terminal domain.Proceedings of the National Academy of Sciences of the United States of America, 90 23
D. Coudreuse, H. Bakel, M. Dewez, J. Soutourina, Tim Parnell, J. Vandenhaute, Brad Cairns, M. Werner, D. Hermand (2010)
A Gene-Specific Requirement of RNA Polymerase II CTD Phosphorylation for Sexual Differentiation in S. pombeCurrent Biology, 20
J. Dobbins, N. Murali, E. Long (2009)
Structural redesign and stabilization of the overlapping tandem beta-turns of RNA polymerase II.International journal of peptide and protein research, 47 4
Kim (2010)
Gene-specific RNA polymerase II phosphorylation and the CTD code.Nat Struct Mol Biol, 17
A. Mayer, Michael Lidschreiber, M. Siebert, K. Leike, J. Söding, P. Cramer (2010)
Uniform transitions of the general RNA polymerase II transcription complexNature Structural &Molecular Biology, 17
M. Sudol, T. Hunter (2000)
NeW Wrinkles for an Old DomainCell, 103
S. Hausmann, S. Shuman (2002)
Characterization of the CTD Phosphatase Fcp1 from Fission YeastThe Journal of Biological Chemistry, 277
T. Maniatis, R. Reed (2002)
An extensive network of coupling among gene expression machinesNature, 416
R. Sims, Luis Rojas, D. Beck, R. Bonasio, Roland Schüller, W. Drury, D. Eick, D. Reinberg (2011)
The C-Terminal Domain of RNA Polymerase II Is Modified by Site-Specific MethylationScience, 332
J. Stiller, Matthew Cook (2004)
Functional Unit of the RNA Polymerase II C-Terminal Domain Lies within Heptapeptide PairsEukaryotic Cell, 3
M. Tisseur, Marta Kwapisz, Antonin Morillon (2011)
Pervasive transcription - Lessons from yeast.Biochimie, 93 11
C. Ho, S. Shuman (1999)
Distinct roles for CTD Ser-2 and Ser-5 phosphorylation in the recruitment and allosteric activation of mammalian mRNA capping enzyme.Molecular cell, 3 3
A. Mayer, M. Heidemann, Michael Lidschreiber, A. Schreieck, Mai Sun, Corinna Hintermair, E. Kremmer, D. Eick, P. Cramer (2012)
CTD Tyrosine Phosphorylation Impairs Termination Factor Recruitment to RNA Polymerase IIScience, 336
D. Licatalosi, G. Geiger, M. Minet, S. Schroeder, K. Cilli, J.Bryan McNeil, D. Bentley (2002)
Functional interaction of yeast pre-mRNA 3' end processing factors with RNA polymerase II.Molecular cell, 9 5
RNA polymerase II (RNA pol II) is not only the fundamental enzyme for gene expression but also the central coordinator of co‐transcriptional processing. RNA pol II associates with a large number of enzymes and protein/RNA‐binding factors through its C‐terminal domain (CTD) that consists of tandem repeats of the heptapeptide consensus Y1S2P3T4S5P6S7. The CTD is posttranslationally modified, yielding specific patterns (often called the CTD code) that are recognized by appropriate factors in coordination with the transcription cycle. Serine phosphorylations are currently the best characterized elements of the CTD code; however, the roles of the proline isomerization and other modifications of the CTD remain poorly understood. The dynamic remodeling of the CTD modifications by kinases, phosphatases, isomerases, and other enzymes introduce changes in the CTD structure and dynamics. These changes serve as structural switches that spatially and temporally regulate the binding of processing factors. Recent structural studies of the CTD bound to various proteins have revealed the basic rules that govern the recognition of these switches and shed light on the roles of these protein factors in the assemblies of the processing machineries. WIREs RNA 2013, 4:1–16. doi: 10.1002/wrna.1138 For further resources related to this article, please visit the WIREs website.
Wiley Interdisciplinary Reviews: Rna – Wiley
Published: Jan 1, 2013
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.