The art of modelling range‐shifting species

The art of modelling range‐shifting species Summary 1. Species are shifting their ranges at an unprecedented rate through human transportation and environmental change. Correlative species distribution models (SDMs) are frequently applied for predicting potential future distributions of range‐shifting species, despite these models’ assumptions that species are at equilibrium with the environments used to train (fit) the models, and that the training data are representative of conditions to which the models are predicted. Here we explore modelling approaches that aim to minimize extrapolation errors and assess predictions against prior biological knowledge. Our aim was to promote methods appropriate to range‐shifting species. 2. We use an invasive species, the cane toad in Australia, as an example, predicting potential distributions under both current and climate change scenarios. We use four SDM methods, and trial weighting schemes and choice of background samples appropriate for species in a state of spread. We also test two methods for including information from a mechanistic model. Throughout, we explore graphical techniques for understanding model behaviour and reliability, including the extent of extrapolation. 3. Predictions varied with modelling method and data treatment, particularly with regard to the use and treatment of absence data. Models that performed similarly under current climatic conditions deviated widely when transferred to a novel climatic scenario. 4. The results highlight problems with using SDMs for extrapolation, and demonstrate the need for methods and tools to understand models and predictions. We have made progress in this direction and have implemented exploratory techniques as new options in the free modelling software, MaxEnt. Our results also show that deliberately controlling the fit of models and integrating information from mechanistic models can enhance the reliability of correlative predictions of species in non‐equilibrium and novel settings. 5. Implications. The biodiversity of many regions in the world is experiencing novel threats created by species invasions and climate change. Predictions of future species distributions are required for management, but there are acknowledged problems with many current methods, and relatively few advances in techniques for understanding or overcoming these. The methods presented in this manuscript and made accessible in MaxEnt provide a forward step. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Methods in Ecology and Evolution Wiley

The art of modelling range‐shifting species

Loading next page...
 
/lp/wiley/the-art-of-modelling-range-shifting-species-ULyIo8qtpQ
Publisher
Wiley
Copyright
© 2010 The Authors. Journal compilation © 2010 British Ecological Society
ISSN
2041-210X
eISSN
2041-210X
DOI
10.1111/j.2041-210X.2010.00036.x
Publisher site
See Article on Publisher Site

Abstract

Summary 1. Species are shifting their ranges at an unprecedented rate through human transportation and environmental change. Correlative species distribution models (SDMs) are frequently applied for predicting potential future distributions of range‐shifting species, despite these models’ assumptions that species are at equilibrium with the environments used to train (fit) the models, and that the training data are representative of conditions to which the models are predicted. Here we explore modelling approaches that aim to minimize extrapolation errors and assess predictions against prior biological knowledge. Our aim was to promote methods appropriate to range‐shifting species. 2. We use an invasive species, the cane toad in Australia, as an example, predicting potential distributions under both current and climate change scenarios. We use four SDM methods, and trial weighting schemes and choice of background samples appropriate for species in a state of spread. We also test two methods for including information from a mechanistic model. Throughout, we explore graphical techniques for understanding model behaviour and reliability, including the extent of extrapolation. 3. Predictions varied with modelling method and data treatment, particularly with regard to the use and treatment of absence data. Models that performed similarly under current climatic conditions deviated widely when transferred to a novel climatic scenario. 4. The results highlight problems with using SDMs for extrapolation, and demonstrate the need for methods and tools to understand models and predictions. We have made progress in this direction and have implemented exploratory techniques as new options in the free modelling software, MaxEnt. Our results also show that deliberately controlling the fit of models and integrating information from mechanistic models can enhance the reliability of correlative predictions of species in non‐equilibrium and novel settings. 5. Implications. The biodiversity of many regions in the world is experiencing novel threats created by species invasions and climate change. Predictions of future species distributions are required for management, but there are acknowledged problems with many current methods, and relatively few advances in techniques for understanding or overcoming these. The methods presented in this manuscript and made accessible in MaxEnt provide a forward step.

Journal

Methods in Ecology and EvolutionWiley

Published: Dec 1, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off