The ANNS approach to DEM reconstruction

The ANNS approach to DEM reconstruction This research has 6 fundamental aims: (i) to present a modified version of Taylor's interpolation, one that is more effective and faster than the original; (ii) outline the capability of artificial neural networks (ANNs) to perform an optimal functional approximation of the digital elevation model reconstruction from a satellite map, using a small and independent sample of Global Positioning System observations; (iii) demonstrate experimentally how ANNs outperform the traditional and most used algorithm for the height interpolation (Taylor's interpolation); (iv) introduce a new ANN, the Conic Net, able to outperform the results of the classic and more known multilayer perceptron; (v) determine that Conic Nets, even when using Taylor's modified interpolation as input features, are able to optimally approximate the heights with one order of magnitude more than the original satellite map; and (vi) make evident the possibility to interpolate the DEM heights through an ANN, which learns a data set of known points. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Computational Intelligence Wiley
Loading next page...
 
/lp/wiley/the-anns-approach-to-dem-reconstruction-bZbd5JT6uA
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
© 2018 Wiley Periodicals, Inc.
ISSN
0824-7935
eISSN
1467-8640
D.O.I.
10.1111/coin.12151
Publisher site
See Article on Publisher Site

Abstract

This research has 6 fundamental aims: (i) to present a modified version of Taylor's interpolation, one that is more effective and faster than the original; (ii) outline the capability of artificial neural networks (ANNs) to perform an optimal functional approximation of the digital elevation model reconstruction from a satellite map, using a small and independent sample of Global Positioning System observations; (iii) demonstrate experimentally how ANNs outperform the traditional and most used algorithm for the height interpolation (Taylor's interpolation); (iv) introduce a new ANN, the Conic Net, able to outperform the results of the classic and more known multilayer perceptron; (v) determine that Conic Nets, even when using Taylor's modified interpolation as input features, are able to optimally approximate the heights with one order of magnitude more than the original satellite map; and (vi) make evident the possibility to interpolate the DEM heights through an ANN, which learns a data set of known points.

Journal

Computational IntelligenceWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off