The analysis of interfacial thermal stresses of solid oxide fuel cell applied for submarine power

The analysis of interfacial thermal stresses of solid oxide fuel cell applied for submarine power Solid oxide fuel cell (SOFC) due to its high energy conversion rate and low noise can replace diesel energy as the submarine power. The interface thermal stress has an important effect on the stabilization and endurance of SOFC. The thermomechanical model of SOFC, which takes the interfacial layer into account, is developed to analyze the interfacial thermal stresses between electrodes and electrolyte in this paper. Based on the formation mechanism and composition distribution of the interfacial layer and the stress analysis of the half‐cell system, the material property of the interfacial layer is determined and the interfacial thermal stress is expressed accurately. The finite element model of SOFC is employed to investigate the interfacial thermal stress, and the simulated result agrees well with the theoretical result. The modified expressions of interfacial thermal stresses for numerical result are given to analyze the difference between theoretical and simulated results at the free edge of SOFC. The anode‐electrolyte interface needs to be concerned because its thermal stress level is higher and more likely to fail and partially delaminate compared with that of cathode‐electrolyte interface. In addition, the optimization scheme with respect to the interfacial layer thickness is obtained and the interfacial thermal stress decreases with the increase of the interfacial layer thickness. The research provides guidance for determining and minimizing the interfacial thermal stresses of SOFC. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Energy Research Wiley

The analysis of interfacial thermal stresses of solid oxide fuel cell applied for submarine power

Loading next page...
 
/lp/wiley/the-analysis-of-interfacial-thermal-stresses-of-solid-oxide-fuel-cell-6WDpEHUGHf
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 John Wiley & Sons, Ltd.
ISSN
0363-907X
eISSN
1099-114X
D.O.I.
10.1002/er.4005
Publisher site
See Article on Publisher Site

Abstract

Solid oxide fuel cell (SOFC) due to its high energy conversion rate and low noise can replace diesel energy as the submarine power. The interface thermal stress has an important effect on the stabilization and endurance of SOFC. The thermomechanical model of SOFC, which takes the interfacial layer into account, is developed to analyze the interfacial thermal stresses between electrodes and electrolyte in this paper. Based on the formation mechanism and composition distribution of the interfacial layer and the stress analysis of the half‐cell system, the material property of the interfacial layer is determined and the interfacial thermal stress is expressed accurately. The finite element model of SOFC is employed to investigate the interfacial thermal stress, and the simulated result agrees well with the theoretical result. The modified expressions of interfacial thermal stresses for numerical result are given to analyze the difference between theoretical and simulated results at the free edge of SOFC. The anode‐electrolyte interface needs to be concerned because its thermal stress level is higher and more likely to fail and partially delaminate compared with that of cathode‐electrolyte interface. In addition, the optimization scheme with respect to the interfacial layer thickness is obtained and the interfacial thermal stress decreases with the increase of the interfacial layer thickness. The research provides guidance for determining and minimizing the interfacial thermal stresses of SOFC.

Journal

International Journal of Energy ResearchWiley

Published: Jan 1, 2018

Keywords: ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off