Testing the grass‐fire cycle: alien grass invasion in the tropical savannas of northern Australia

Testing the grass‐fire cycle: alien grass invasion in the tropical savannas of northern Australia Abstract. Invasive alien grasses can increase fuel loads, leading to changes in fire regimes of invaded ecosystems by increasing the frequency, intensity and spatial extent of fires. Andropogon gayanus Kunth. (Gamba grass), a tall perennial grass from Africa, is invading ecosystems in the Top End of northern Australia. To determine whether A. gayanus alters savanna fire regimes, we compared fuel loads and fire intensities at invaded sites with those from native grass savannas. Savanna invaded by A. gayanus had fuel loads up to seven times higher than those dominated by native grasses. This higher fuel load supported a fire that was on average eight times more intense than those recorded in native grass savannas at the same time of year (means 15700 ± 6200 and 2100 ± 290 kW m−1, respectively), and was the highest early dry season fire intensities ever recorded in the Northern Territory. These results suggest that A. gayanus is a serious threat to northern Australia's savannas, with the potential to alter vegetation structure and initiate a grass‐fire cycle. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Diversity and Distributions Wiley

Testing the grass‐fire cycle: alien grass invasion in the tropical savannas of northern Australia

Loading next page...
 
/lp/wiley/testing-the-grass-fire-cycle-alien-grass-invasion-in-the-tropical-owzv4zz52t
Publisher
Wiley
Copyright
Copyright © 2003 Wiley Subscription Services, Inc., A Wiley Company
ISSN
1366-9516
eISSN
1472-4642
D.O.I.
10.1046/j.1472-4642.2003.00020.x
Publisher site
See Article on Publisher Site

Abstract

Abstract. Invasive alien grasses can increase fuel loads, leading to changes in fire regimes of invaded ecosystems by increasing the frequency, intensity and spatial extent of fires. Andropogon gayanus Kunth. (Gamba grass), a tall perennial grass from Africa, is invading ecosystems in the Top End of northern Australia. To determine whether A. gayanus alters savanna fire regimes, we compared fuel loads and fire intensities at invaded sites with those from native grass savannas. Savanna invaded by A. gayanus had fuel loads up to seven times higher than those dominated by native grasses. This higher fuel load supported a fire that was on average eight times more intense than those recorded in native grass savannas at the same time of year (means 15700 ± 6200 and 2100 ± 290 kW m−1, respectively), and was the highest early dry season fire intensities ever recorded in the Northern Territory. These results suggest that A. gayanus is a serious threat to northern Australia's savannas, with the potential to alter vegetation structure and initiate a grass‐fire cycle.

Journal

Diversity and DistributionsWiley

Published: May 1, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off