Testing the Generality of Bird‐Habitat Models

Testing the Generality of Bird‐Habitat Models Bird‐habitat models are frequently used as predictive modeling tools—for example, to predict how a species will respond to habitat modifications. We investigated the generality of the predictions from this type of model. Multivariate models were developed for Golden Eagle (Aquila chrysaetos), Raven (Corvus corax), and Buzzard (Buteo buteo) living in northwest Scotland. Data were obtained for all habitat and nest locations within an area of 2349 km2. This assemblage of species is relatively static with respect to both occupancy and spatial positioning. The area was split into five geographic subregions: two on the mainland and three on the adjacent Island of Mull, which has one of United Kingdom’s richest raptor fauna assemblages. Because data were collected for all nest locations and habitats, it was possible to build models that did not incorporate sampling error. A range of predictive models was developed using discriminant analysis and logistic regression. The models differed with respect to the geographical origin of the data used for model development. The predictive success of these models was then assessed by applying them to validation data. The models showed a wide range of predictive success, ranging from only 6% of nest sites correctly predicted to 100% correctly predicted. Model validation techniques were used to ensure that the models’ predictions were not statistical artefacts. The variability in prediction success seemed to result from methodological and ecological processes, including the data recording scheme and interregional differences in nesting habitat. The results from this study suggest that conservation biologists must be very careful about making predictions from such studies because we may be working with systems that are inherently unpredictable. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Conservation Biology Wiley

Testing the Generality of Bird‐Habitat Models

Loading next page...
 
/lp/wiley/testing-the-generality-of-bird-habitat-models-P10HfeqnJ6
Publisher
Wiley
Copyright
Copyright © 1995 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0888-8892
eISSN
1523-1739
DOI
10.1046/j.1523-1739.1995.09061466.x
Publisher site
See Article on Publisher Site

Abstract

Bird‐habitat models are frequently used as predictive modeling tools—for example, to predict how a species will respond to habitat modifications. We investigated the generality of the predictions from this type of model. Multivariate models were developed for Golden Eagle (Aquila chrysaetos), Raven (Corvus corax), and Buzzard (Buteo buteo) living in northwest Scotland. Data were obtained for all habitat and nest locations within an area of 2349 km2. This assemblage of species is relatively static with respect to both occupancy and spatial positioning. The area was split into five geographic subregions: two on the mainland and three on the adjacent Island of Mull, which has one of United Kingdom’s richest raptor fauna assemblages. Because data were collected for all nest locations and habitats, it was possible to build models that did not incorporate sampling error. A range of predictive models was developed using discriminant analysis and logistic regression. The models differed with respect to the geographical origin of the data used for model development. The predictive success of these models was then assessed by applying them to validation data. The models showed a wide range of predictive success, ranging from only 6% of nest sites correctly predicted to 100% correctly predicted. Model validation techniques were used to ensure that the models’ predictions were not statistical artefacts. The variability in prediction success seemed to result from methodological and ecological processes, including the data recording scheme and interregional differences in nesting habitat. The results from this study suggest that conservation biologists must be very careful about making predictions from such studies because we may be working with systems that are inherently unpredictable.

Journal

Conservation BiologyWiley

Published: Dec 1, 1995

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off