Testing space‐scale methodologies for automatic geomorphic feature extraction from lidar in a complex mountainous landscape

Testing space‐scale methodologies for automatic geomorphic feature extraction from lidar in a... The next generation of digital elevation data (≤3 m resolution) calls for the development of new algorithms for the objective extraction of geomorphic features, such as channel networks, channel heads, bank geometry, landslide scars, and service roads. In this work, we test the performance of two newly developed algorithms for the extraction of geomorphic features: the wavelet‐based extraction methodology developed by Lashermes et al. (2007) and the GeoNet nonlinear diffusion and geodesic paths methodology proposed by Passalacqua et al. (2010). The study area is part of the Rio Cordon basin, a headwater alpine catchment located in the Dolomites, a mountainous region in the eastern Italian Alps. The aim of this work is to compare the capability of the two new algorithms in extracting the channel network and capturing channel heads, relevant channel disruptions corresponding to landslides, and representative channel cross sections. The extracted channel networks are also compared to the ones obtained using classical methodologies on the basis of an area threshold and an area‐slope threshold. A high‐resolution digital terrain model of 1 m served as the basis for such analysis. The results suggest that, although the wavelet‐based methodology performs well in the channel network extraction and is able to detect channel heads and channel disruptions, the local nonlinear filter together with the global geodesic optimization used in GeoNet is more robust and computationally efficient while achieving better localization and extraction of features, especially in areas where gentle slopes prevail. We conclude that these new methodologies should be considered as valid alternatives to classical methodologies for channel network extraction from lidar, in addition to offering the potential for calibration‐free channel source identification and also extraction of additional features of interest. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Water Resources Research Wiley

Testing space‐scale methodologies for automatic geomorphic feature extraction from lidar in a complex mountainous landscape

Loading next page...
 
/lp/wiley/testing-space-scale-methodologies-for-automatic-geomorphic-feature-5YjVmkjdQg
Publisher
Wiley
Copyright
Copyright © 2010 by the American Geophysical Union.
ISSN
0043-1397
eISSN
1944-7973
D.O.I.
10.1029/2009WR008812
Publisher site
See Article on Publisher Site

Abstract

The next generation of digital elevation data (≤3 m resolution) calls for the development of new algorithms for the objective extraction of geomorphic features, such as channel networks, channel heads, bank geometry, landslide scars, and service roads. In this work, we test the performance of two newly developed algorithms for the extraction of geomorphic features: the wavelet‐based extraction methodology developed by Lashermes et al. (2007) and the GeoNet nonlinear diffusion and geodesic paths methodology proposed by Passalacqua et al. (2010). The study area is part of the Rio Cordon basin, a headwater alpine catchment located in the Dolomites, a mountainous region in the eastern Italian Alps. The aim of this work is to compare the capability of the two new algorithms in extracting the channel network and capturing channel heads, relevant channel disruptions corresponding to landslides, and representative channel cross sections. The extracted channel networks are also compared to the ones obtained using classical methodologies on the basis of an area threshold and an area‐slope threshold. A high‐resolution digital terrain model of 1 m served as the basis for such analysis. The results suggest that, although the wavelet‐based methodology performs well in the channel network extraction and is able to detect channel heads and channel disruptions, the local nonlinear filter together with the global geodesic optimization used in GeoNet is more robust and computationally efficient while achieving better localization and extraction of features, especially in areas where gentle slopes prevail. We conclude that these new methodologies should be considered as valid alternatives to classical methodologies for channel network extraction from lidar, in addition to offering the potential for calibration‐free channel source identification and also extraction of additional features of interest.

Journal

Water Resources ResearchWiley

Published: Nov 1, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off