Testing large‐scale hypotheses using surveys: the effects of land use on the habitats, invertebrates and birds of Himalayan rivers

Testing large‐scale hypotheses using surveys: the effects of land use on the habitats,... 1. Piecemeal changes in land use might have cumulative effects on regional biodiversity. However, this hypothesis is difficult to test experimentally at the scales involved, so alternative approaches are required. Here, we illustrate some of the strengths and weaknesses of surveys for evaluating the effects of land use on rivers and river birds over a large area of the Himalayan mountains. 2. We surveyed 180 streams and their catchments in north‐west India and Nepal in 1994–96. We then used analysis of covariance (ancova), multiple linear regression and multiple logistic regression to assess how stream habitat structure, stream chemistry, aquatic invertebrate abundance and the occurrence of river birds were affected by land use after accounting for altitudinal pattern. 3. Streams draining terraced catchments differed significantly in habitat structure from other streams. They had more physical modifications, wider channels, fewer cascades, finer substrata and simpler riparian vegetation with fewer trees. We detected no clear effects of land use on stream chemistry, but terracing was accompanied by significantly increased abundances of benthic dipterans, ephemeropterans and total aquatic invertebrates. 4. River bird occurrence was best explained by altitude, and secondarily by habitat structure. Some of the habitat features influenced by terracing significantly affected birds both positively (grey wagtail Motacilla cinerea) and negatively (little forktail Enicurus scouleri, river chat Chaimarrornis leucocephalus, brown dipper Cinclus pallasii, plumbeous redstart Rhyacornis fuliginosus). However, only in the grey wagtail did the presence of terracing per se affect occurrence unequivocally; effects on other species were either small or confounded by altitude. 5. We cannot refute the hypothesis that catchment land use affects Himalayan river ecology, but our data on the regional consequences for river birds were equivocal. We suggest that large‐scale surveys, although providing one of the few pragmatic methods of assessing large anthropogenic effects on ecosystems, will need careful design to factor out potential confounds if they are to be used to test hypotheses robustly. They should also be supported where possible with process studies, intervention studies and model applications to independent data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Applied Ecology Wiley

Testing large‐scale hypotheses using surveys: the effects of land use on the habitats, invertebrates and birds of Himalayan rivers

Loading next page...
 
/lp/wiley/testing-large-scale-hypotheses-using-surveys-the-effects-of-land-use-nUIn3Uo9lX
Publisher
Wiley
Copyright
Copyright © 2000 Wiley Subscription Services, Inc., A Wiley Company
ISSN
0021-8901
eISSN
1365-2664
D.O.I.
10.1046/j.1365-2664.2000.00537.x
Publisher site
See Article on Publisher Site

Abstract

1. Piecemeal changes in land use might have cumulative effects on regional biodiversity. However, this hypothesis is difficult to test experimentally at the scales involved, so alternative approaches are required. Here, we illustrate some of the strengths and weaknesses of surveys for evaluating the effects of land use on rivers and river birds over a large area of the Himalayan mountains. 2. We surveyed 180 streams and their catchments in north‐west India and Nepal in 1994–96. We then used analysis of covariance (ancova), multiple linear regression and multiple logistic regression to assess how stream habitat structure, stream chemistry, aquatic invertebrate abundance and the occurrence of river birds were affected by land use after accounting for altitudinal pattern. 3. Streams draining terraced catchments differed significantly in habitat structure from other streams. They had more physical modifications, wider channels, fewer cascades, finer substrata and simpler riparian vegetation with fewer trees. We detected no clear effects of land use on stream chemistry, but terracing was accompanied by significantly increased abundances of benthic dipterans, ephemeropterans and total aquatic invertebrates. 4. River bird occurrence was best explained by altitude, and secondarily by habitat structure. Some of the habitat features influenced by terracing significantly affected birds both positively (grey wagtail Motacilla cinerea) and negatively (little forktail Enicurus scouleri, river chat Chaimarrornis leucocephalus, brown dipper Cinclus pallasii, plumbeous redstart Rhyacornis fuliginosus). However, only in the grey wagtail did the presence of terracing per se affect occurrence unequivocally; effects on other species were either small or confounded by altitude. 5. We cannot refute the hypothesis that catchment land use affects Himalayan river ecology, but our data on the regional consequences for river birds were equivocal. We suggest that large‐scale surveys, although providing one of the few pragmatic methods of assessing large anthropogenic effects on ecosystems, will need careful design to factor out potential confounds if they are to be used to test hypotheses robustly. They should also be supported where possible with process studies, intervention studies and model applications to independent data.

Journal

Journal of Applied EcologyWiley

Published: Oct 1, 2000

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off