Testing global ocean carbon cycle models using measurements of atmospheric O 2 and CO 2 concentration

Testing global ocean carbon cycle models using measurements of atmospheric O 2 and CO 2... We present a method for testing the performance of global ocean carbon cycle models using measurements of atmospheric O2 and CO2 concentration. We combine these measurements to define a tracer, atmospheric potential oxygen (APO ≈ O2 + CO2), which is conservative with respect to terrestrial photosynthesis and respiration. We then compare observations of APO to the simulations of an atmospheric transport model which uses ocean‐model air‐sea fluxes and fossil fuel combustion estimates as lower boundary conditions. We present observations of the annual‐average concentrations of CO2, O2, and APO at 10 stations in a north‐south transect. The observations of APO show a significant interhemispheric gradient decreasing towards the north. We use air‐sea CO2, O2, and N2 fluxes from the Princeton ocean biogeochemistry model, the Hamburg model of the ocean carbon cycle, and the Lawrence Livermore ocean biogeochemistry model to drive the TM2 atmospheric transport model. The latitudinal variations in annual‐average APO predicted by the combined models are distinctly different from the observations. All three models significantly underestimate the interhemispheric difference in APO, suggesting that they underestimate the net southward transport of the sum of O2 and CO2 in the oceans. Uncertainties in the model‐observation comparisons include uncertainties associated with the atmospheric measurements, the atmospheric transport model, and the physical and biological components of the ocean models. Potential deficiencies in the physical components of the ocean models, which have previously been suggested as causes for anomalously large heat fluxes out of the Southern Ocean, may contribute to the discrepancies with the APO observations. These deficiencies include the inadequate parameterization of subgrid‐scale isopycnal eddy mixing, a lack of subgrid‐scale vertical convection, too much Antarctic sea‐ice formation, and an overestimation of vertical diffusivities in the main thermocline. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Global Biogeochemical Cycles Wiley

Testing global ocean carbon cycle models using measurements of atmospheric O 2 and CO 2 concentration

Loading next page...
 
/lp/wiley/testing-global-ocean-carbon-cycle-models-using-measurements-of-fR0x0RtjB9
Publisher
Wiley
Copyright
Copyright © 1998 by the American Geophysical Union.
ISSN
0886-6236
eISSN
1944-9224
DOI
10.1029/97GB03500
Publisher site
See Article on Publisher Site

Abstract

We present a method for testing the performance of global ocean carbon cycle models using measurements of atmospheric O2 and CO2 concentration. We combine these measurements to define a tracer, atmospheric potential oxygen (APO ≈ O2 + CO2), which is conservative with respect to terrestrial photosynthesis and respiration. We then compare observations of APO to the simulations of an atmospheric transport model which uses ocean‐model air‐sea fluxes and fossil fuel combustion estimates as lower boundary conditions. We present observations of the annual‐average concentrations of CO2, O2, and APO at 10 stations in a north‐south transect. The observations of APO show a significant interhemispheric gradient decreasing towards the north. We use air‐sea CO2, O2, and N2 fluxes from the Princeton ocean biogeochemistry model, the Hamburg model of the ocean carbon cycle, and the Lawrence Livermore ocean biogeochemistry model to drive the TM2 atmospheric transport model. The latitudinal variations in annual‐average APO predicted by the combined models are distinctly different from the observations. All three models significantly underestimate the interhemispheric difference in APO, suggesting that they underestimate the net southward transport of the sum of O2 and CO2 in the oceans. Uncertainties in the model‐observation comparisons include uncertainties associated with the atmospheric measurements, the atmospheric transport model, and the physical and biological components of the ocean models. Potential deficiencies in the physical components of the ocean models, which have previously been suggested as causes for anomalously large heat fluxes out of the Southern Ocean, may contribute to the discrepancies with the APO observations. These deficiencies include the inadequate parameterization of subgrid‐scale isopycnal eddy mixing, a lack of subgrid‐scale vertical convection, too much Antarctic sea‐ice formation, and an overestimation of vertical diffusivities in the main thermocline.

Journal

Global Biogeochemical CyclesWiley

Published: Jun 1, 1998

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off