Testate amoeba records indicate regional 20th‐century lowering of water tables in ombrotrophic peatlands in central‐northern Alberta, Canada

Testate amoeba records indicate regional 20th‐century lowering of water tables in ombrotrophic... Testate amoebae are abundant in the surface layers of northern peatlands. Analysis of their fossilized shell (test) assemblages allows for reconstructions of local water‐table depths (WTD). We have reconstructed WTD dynamics for five peat cores from peatlands ranging in distance from the Athabasca bituminous sands (ABS) region in western Canada. Amoeba assemblages were combined with plant macrofossil records, acid‐insoluble ash (AIA) fluxes and instrumental climate data to identify drivers for environmental change. Two functional traits of testate amoebae, mixotrophy and the tendency to integrate xenogenic mineral matter in test construction, were quantified to infer possible effects of AIA flux on testate amoeba presence. Age–depth models showed the cores each covered at least the last ~315 years, with some spanning the last millennium. Testate amoeba assemblages were likely affected by permafrost development in two of the peatlands, yet the most important shift in assemblages was detected after 1960 CE. This shift represents a significant apparent lowering of water tables in four out of five cores, with a mean drop of ~15 cm. Over the last 50 years, assemblages shifted towards more xerophilous taxa, a trend which was best explained by increasing Sphagnum s. Acutifolia and, to a lesser extent, mean summer temperature. This trend was most evident in the two cores from the sites located farthest away from the ABS region. AIA flux variations did not show a clear effect on mineral‐agglutinating taxa, nor on S. s. Acutifolia presence. We therefore suggest the drying trend was forced by the establishment of S. s. Acutifolia, driven by enhanced productivity following regional warming. Such recent apparent drying of peatlands, which may only be reconstructed by appropriate indicators combined with high chronological control, may affect vulnerability to future burning and promote emissions of CO2. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Global Change Biology Wiley

Testate amoeba records indicate regional 20th‐century lowering of water tables in ombrotrophic peatlands in central‐northern Alberta, Canada

Loading next page...
 
/lp/wiley/testate-amoeba-records-indicate-regional-20th-century-lowering-of-lRdEyurnWO
Publisher
Wiley Subscription Services, Inc., A Wiley Company
Copyright
Copyright © 2018 John Wiley & Sons Ltd
ISSN
1354-1013
eISSN
1365-2486
D.O.I.
10.1111/gcb.14143
Publisher site
See Article on Publisher Site

Abstract

Testate amoebae are abundant in the surface layers of northern peatlands. Analysis of their fossilized shell (test) assemblages allows for reconstructions of local water‐table depths (WTD). We have reconstructed WTD dynamics for five peat cores from peatlands ranging in distance from the Athabasca bituminous sands (ABS) region in western Canada. Amoeba assemblages were combined with plant macrofossil records, acid‐insoluble ash (AIA) fluxes and instrumental climate data to identify drivers for environmental change. Two functional traits of testate amoebae, mixotrophy and the tendency to integrate xenogenic mineral matter in test construction, were quantified to infer possible effects of AIA flux on testate amoeba presence. Age–depth models showed the cores each covered at least the last ~315 years, with some spanning the last millennium. Testate amoeba assemblages were likely affected by permafrost development in two of the peatlands, yet the most important shift in assemblages was detected after 1960 CE. This shift represents a significant apparent lowering of water tables in four out of five cores, with a mean drop of ~15 cm. Over the last 50 years, assemblages shifted towards more xerophilous taxa, a trend which was best explained by increasing Sphagnum s. Acutifolia and, to a lesser extent, mean summer temperature. This trend was most evident in the two cores from the sites located farthest away from the ABS region. AIA flux variations did not show a clear effect on mineral‐agglutinating taxa, nor on S. s. Acutifolia presence. We therefore suggest the drying trend was forced by the establishment of S. s. Acutifolia, driven by enhanced productivity following regional warming. Such recent apparent drying of peatlands, which may only be reconstructed by appropriate indicators combined with high chronological control, may affect vulnerability to future burning and promote emissions of CO2.

Journal

Global Change BiologyWiley

Published: Jan 1, 2018

Keywords: ; ; ; ; ; ; ;

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off