Temporal stability of an NDVI‐LAI relationship in a Napa Valley vineyard

Temporal stability of an NDVI‐LAI relationship in a Napa Valley vineyard Remotely sensed values for normalised difference vegetation index (NDVI) were derived periodically from high‐resolution Ikonos satellite images during the 2001 growing season, and compared with ground measurements of vineyard leaf area index (LAI) during that same period. These two derived variables were strongly related in six vineyard blocks on each of four occasions (R2= 0.91 to 0.98). Linear regression equations relating these two derived variables did not differ significantly by time‐step, and a single equation accounted for 92 per cent of the variance in the combined dataset. Such temporal stability in that relationship opens the possibility of transforming NDVI maps to LAI units, at least on a localised basis, and minimising (or even eliminating) subsequent ground calibration. This reduction in fieldwork would then decrease information cost for viticulturists who wish to monitor LAI sequentially within season, or who wish to track year‐to‐year changes in climax LAI with a single image collected annually. To take advantage of this cost reduction, temporal consistency in spectral data values comprising NDVI must be assured. This present paper addresses that issue. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Australian Journal of Grape and Wine Research Wiley

Temporal stability of an NDVI‐LAI relationship in a Napa Valley vineyard

Loading next page...
 
/lp/wiley/temporal-stability-of-an-ndvi-lai-relationship-in-a-napa-valley-0cN74mc8TA
Publisher
Wiley
Copyright
Copyright © 2003 Wiley Subscription Services, Inc., A Wiley Company
ISSN
1322-7130
eISSN
1755-0238
DOI
10.1111/j.1755-0238.2003.tb00258.x
Publisher site
See Article on Publisher Site

Abstract

Remotely sensed values for normalised difference vegetation index (NDVI) were derived periodically from high‐resolution Ikonos satellite images during the 2001 growing season, and compared with ground measurements of vineyard leaf area index (LAI) during that same period. These two derived variables were strongly related in six vineyard blocks on each of four occasions (R2= 0.91 to 0.98). Linear regression equations relating these two derived variables did not differ significantly by time‐step, and a single equation accounted for 92 per cent of the variance in the combined dataset. Such temporal stability in that relationship opens the possibility of transforming NDVI maps to LAI units, at least on a localised basis, and minimising (or even eliminating) subsequent ground calibration. This reduction in fieldwork would then decrease information cost for viticulturists who wish to monitor LAI sequentially within season, or who wish to track year‐to‐year changes in climax LAI with a single image collected annually. To take advantage of this cost reduction, temporal consistency in spectral data values comprising NDVI must be assured. This present paper addresses that issue.

Journal

Australian Journal of Grape and Wine ResearchWiley

Published: Jul 1, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off